Search results for: explicit formulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1676

Search results for: explicit formulation

1496 Assessing Finance by Ethnic Entrepreneurs in United Kingdom and Policy Implication

Authors: Aliyu Aminu Baba

Abstract:

Ethnic entrepreneurship is defined as a set of connections and regular patterns of interaction among people sharing common national background or migration experience. The disadvantage faced by ethnic minority on paid labour induced them to become self-employed. Also, enclaves motivates trading, creativity, innovation are all to provide specific service or products to certain people. These ethnic minorities are African –Caribbean, Indians, Pakistanis, Banghaladashi and Chinese. For policy development ethnic diversity was among the problem of developing policy in United Kingdom. The study finds that there is a danger in treating all ethnic minority businesses as homogeneous rather than heterogeneous. The diversity is due to religious beliefs, culture and race. This indicates that there is a wide range have shortfall in addressing the peculiarities of ethnic minority businesses in policy formulation. Also, there are differences between ethnic minorities in accessing finance. It is recommended that diversity and peculiarities between ethnic minorities should be considered in policy formulation.

Keywords: ethnic entrepreneurship, finance, policy implication, diversity

Procedia PDF Downloads 368
1495 Learner Autonomy Transfer from Teacher Education Program to the Classroom: Teacher Training is not Enough

Authors: Ira Slabodar

Abstract:

Autonomous learning in English as a Foreign Language (EFL) refers to the use of target language, learner collaboration and students’ responsibility for their learning. Teachers play a vital role of mediators and facilitators in self-regulated method. Thus, their perception of self-guided practices dictates their implementation of this approach. While research has predominantly focused on inadequate administration of autonomous learning in school mostly due to lack of appropriate teacher training, this study examined whether novice teachers who were exposed to extensive autonomous practices were likely to implement this method in their teaching. Twelve novice teachers were interviewed to examine their perception of learner autonomy and their administration of this method. It was found that three-thirds of the respondents experienced a gap between familiarity with autonomous learning and a favorable attitude to this approach and their deficient integration of self-directed learning. Although learner-related and institution-oriented factors played a role in this gap, it was mostly caused by the respondents’ not being genuinely autonomous. This may be due to indirect exposure rather than explicit introduction of the learner autonomy approach. The insights of this research may assist curriculum designers and heads of teacher training programs to rethink course composition to guarantee the transfer of methodologies into EFL classes.

Keywords: learner autonomy, teacher training, english as a foreign language (efl), genuinely autonomous teachers, explicit instruction, self-determination theory

Procedia PDF Downloads 58
1494 Existing International Cooperation Mechanisms and Proposals to Enhance Their Effectiveness for Marine-Based Geoengineering Governance

Authors: Aylin Mohammadalipour Tofighi

Abstract:

Marine-based geoengineering methods, proposed to mitigate climate change, operate primarily through two mechanisms: reducing atmospheric carbon dioxide levels and diminishing solar absorption by the oceans. While these approaches promise beneficial outcomes, they are fraught with environmental, legal, ethical, and political challenges, necessitating robust international governance. This paper underscores the critical role of international cooperation within the governance framework, offering a focused analysis of existing international environmental mechanisms applicable to marine-based geoengineering governance. It evaluates the efficacy and limitations of current international legal structures, including treaties and organizations, in managing marine-based geoengineering, noting significant gaps such as the absence of specific regulations, dedicated international entities, and explicit governance mechanisms such as monitoring. To rectify these problems, the paper advocates for concrete steps to bolster international cooperation. These include the formulation of dedicated marine-based geoengineering guidelines within international agreements, the establishment of specialized supervisory entities, and the promotion of transparent, global consensus-building. These recommendations aim to foster governance that is environmentally sustainable, ethically sound, and politically feasible, thereby enhancing knowledge exchange, spurring innovation, and advancing the development of marine-based geoengineering approaches. This study emphasizes the importance of collaborative approaches in managing the complexities of marine-based geoengineering, contributing significantly to the discourse on international environmental governance in the face of rapid climate and technological changes.

Keywords: climate change, environmental law, international cooperation, international governance, international law, marine-based geoengineering, marine law, regulatory frameworks

Procedia PDF Downloads 72
1493 Development and Evaluation of Antimicrobial Herbal Mouthwash Including Methanolic Extracts of Beautea monosperma and Cordia obliqua

Authors: Reenu Yadav, S. K. Yadav

Abstract:

Herbal therapy has been used for daily oral health care to prevent, treat or cure oral conditions from halitosis to periodontal diseases. The importance of mouth and teeth cleanliness has been recognized from the earliest days of civilization to the 21st century. In the present study, leaves and seeds of Cordia obliqua and barks and twigs of Beautea monosperma, which is used traditionally for oral diseases was evaluated for its antimicrobial activity. The antimicrobial activity tests indicated that the methanolic extract exhibited stronger activities against the commonly encountered oral bacterial and fungal pathogens. The mouthwash formulation prepared and it is compared with marketed formulation HiOra. The results indicated that the herbal mouthwash could inhibit the growth of oral pathogens and may prevent plaque and other periodontal diseases caused by dental pathogens.

Keywords: herbal mouthwash, bio medicine, life sciences, herbal extracts

Procedia PDF Downloads 348
1492 Engoglaze Development for the Production of Glazed Porcelain Tiles

Authors: Sezgi Isik, Yasin Urersoy, Gizem Ustunel, Ilkyaz Yalcin

Abstract:

Improvement of the digital tile application, lots of process revolutions have occurred in the tile production. In order to create unique and inimitable designs, all the competitors start to try different applications. Both Europian and domestic ceramic producers focus on the deep and realistic surfaces. In this study, the trend of engoglaze, which is becoming widespread in glaze porcelain tile designs to create the most intensive colours, were investigated. The aim of the study is to develop engoglaze formulation that supports digital ink activation. Thermal expansion coefficient values were determined by a dilatometer. Chemical analyses and sintering behaviors of engoglazes were made by X-ray diffraction and heat microscopy analysis. According to these glaze formulation studies, it has been reported that using engoglaze could easily reduce the digital ink consumption of the design. On the other hand, the advantage of the production cost is gained, and deepness of the design is provided.

Keywords: ceramic, engoglaze, digital ink activation, glazed porcelain tile

Procedia PDF Downloads 132
1491 Philippine Foreign Policy in the West Philippine Sea after the 2012 Scarborough Standoff: Implications for National Security

Authors: Rhisan Mae Enriquez-Morales

Abstract:

The primary concern of this study is to answer the question: How does the Philippine government formulate its foreign policy with respect to its territorial claims over areas in the West Philippine Sea after the Scarborough standoff in April 2012? Specifically, the study seeks to provide understanding on the political process in the formulation of foreign policy relating to the Philippine claims in the West Philippine Sea after the 2012 Scarborough Standoff, by looking into the relationship of bureaucracies and how it influences the decision-making process. Secondly, this study aims to determine the long and short term foreign policies of the Philippines with respect to its territorial claims over the West Philippine Sea. Lastly, this study seeks to determine the implication of Philippine foreign policy in settling the West Philippine Sea dispute on the country’s national security. The Bureaucratic Politics Model (BPM) in Foreign Policy Analysis (FPA) is the framework utilized in this study, which focuses primarily on the relationship of bureaucracies in the formulation of foreign policy and how these agencies influence the process of foreign policy formulation. The findings of this study reveal that: first, the Philippines foreign policy in the West Philippine Sea continues to develop to address current developments in the WPS. Second, as the government requires demilitarization there is a shift from traditional to non-traditional security approach. This shift caused inconvenience from the defense sector particularly the Navy thinking that they are being deprived of their traditional roles. Lastly, the Philippine government’s greater emphasis on internal security operation implies the need to reassess its security concerns and look into territorial security.

Keywords: bureaucratic politics model, foreign policy analysis, security, West Philippine sea

Procedia PDF Downloads 393
1490 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 84
1489 Competency and Strategy Formulation in Automobile Industry

Authors: Chandan Deep Singh

Abstract:

In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.

Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation

Procedia PDF Downloads 311
1488 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery

Procedia PDF Downloads 360
1487 Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream

Authors: Naruemon Prapasuwannakul, Supitcha Boonchai, Nawapat Pengpengpit

Abstract:

The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation.

Keywords: ice cream, germinated brown rice, coconut pulp, milk, cream

Procedia PDF Downloads 227
1486 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness

Procedia PDF Downloads 331
1485 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 451
1484 Development of Agomelatine Loaded Proliposomal Powders for Improved Intestinal Permeation: Effect of Surface Charge

Authors: Rajasekhar Reddy Poonuru, Anusha Parnem

Abstract:

Purpose: To formulate proliposome powder of agomelatine, an antipsychotic drug, and to evaluate physicochemical, in vitro characters and effect of surface charge on ex vivo intestinal permeation. Methods: Film deposition technique was employed to develop proliposomal powders of agomelatin with varying molar ratios of lipid Hydro Soy PC L-α-phosphatidylcholine (HSPC) and cholesterol with fixed sum of drug. With the aim to derive free flowing and stable proliposome powder, fluid retention potential of various carriers was examined. Liposome formation and number of vesicles formed for per mm3 up on hydration, vesicle size, and entrapment efficiency was assessed to deduce an optimized formulation. Sodium cholate added to optimized formulation to induce surface charge on formed vesicles. Solid-state characterization (FTIR, DSC, and XRD) was performed with the intention to assess native crystalline and chemical behavior of drug. The in vitro dissolution test of optimized formulation along with pure drug was evaluated to estimate dissolution efficiency (DE) and relative dissolution rate (RDR). Effective permeability co-efficient (Peff(rat)) in rat and enhancement ratio (ER) of drug from formulation and pure drug dispersion were calculated from ex vivo permeation studies in rat ileum. Results: Proliposomal powder formulated with equimolar ratio of HSPC and cholesterol ensued in higher no. of vesicles (3.95) with 90% drug entrapment up on hydration. Neusilin UFL2 was elected as carrier because of its high fluid retention potential (4.5) and good flow properties. Proliposome powder exhibited augmentation in DE (60.3 ±3.34) and RDR (21.2±01.02) of agomelation over pure drug. Solid state characterization studies demonstrated the transformation of native crystalline form of drug to amorphous and/or molecular state, which was in correlation with results obtained from in vitro dissolution test. The elevated Peff(rat) of 46.5×10-4 cm/sec and ER of 2.65 of drug from charge induced proliposome formulation with respect to pure drug dispersion was assessed from ex vivo intestinal permeation studies executed in ileum of wistar rats. Conclusion: Improved physicochemical characters and ex vivo intestinal permeation of drug from charge induced proliposome powder with Neusilin UFL2 unravels the potentiality of this system in enhancing oral delivery of agomelatin.

Keywords: agomelatin, proliposome, sodium cholate, neusilin

Procedia PDF Downloads 136
1483 Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis

Authors: Chandragouda R. Patil, K. S. Jagadeesh, S. D. Kalolgi

Abstract:

Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops.

Keywords: Rhizobium, Azospirillum, phosphate solubilizing bacteria, liquid formulation, benefit-cost ratio

Procedia PDF Downloads 493
1482 Multithreading/Multiprocessing Simulation of The International Space Station Multibody System Using A Divide and Conquer Dynamics Formulation with Flexible Bodies

Authors: Luong A. Nguyen, Elihu Deneke, Thomas L. Harman

Abstract:

This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm is an extension of Featherstone’s divide and conquer approach to include the flexible-body dynamics formulation. The equations of motion, configured for the International Space Station (ISS) with its robotic manipulator arm as a system of articulated flexible bodies, are implemented in separate computer processors. The performance of this divide-and-conquer algorithm implementation in multiple processors is compared with an existing method implemented on a single processor.

Keywords: multibody dynamics, multiple processors, multithreading, divide-and-conquer algorithm, computational efficiency, flexible body dynamics

Procedia PDF Downloads 337
1481 Approach to Study the Workability of Concrete with the Fractal Model

Authors: Achouri Fatima, Chouicha Kaddour

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.

Keywords: concrete, fractal method, paste thickness, water thickness, workability

Procedia PDF Downloads 379
1480 Nanoemulsion Formulation of Ethanolic Extracts of Propolis and Its Antioxidant Activity

Authors: Rachmat Mauludin, Dita Sasri Primaviri, Irda Fidrianny

Abstract:

Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that 70% ethanolic extract of propolis (EEP) provided the greatest antioxidant activity. Since EEP has very small solubility in water, the extract was prepared in nanoemulsion (NE). Nanoemulsion is chosen as cosmetic dosage forms according to its properties namely to decrease the risk of skin’s irritation, increase penetration, prolong its time to remain in our skin, and improve stability. Propolis was extracted using reflux methods and concentrated using rotavapor. EEP was characterized with several tests such as phytochemical screening, density, and antioxidant activity using DPPH method. Optimation of total surfactant, co-surfactant, oil, and amount of EEP that can be included in NE were required to get the best NE formulation. The evaluations included to organoleptic observation, globul size, polydispersity index, morphology using TEM, viscosity, pH, centrifuge, stability, Freeze and Thaw test, radical scavenging activity using DPPH method, and primary irritation test. The yield extracts was 11.12% from raw propolis contained of steroid/triterpenoid, flavonoid, and saponin based on phytochemical screening. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP. NE was transparant, had globul size of 21.9 nm; polydispersity index of 0.338; and pH of 5.67. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25oC, centrifuged for 30 mins at 13.000 rpm, and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE Propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0. The best formulation for NE propolis contained of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP with globul size of 21.9 nm and polydispersity index of 0.338. NE propolis was stable and had antioxidant activity similar to EEP.

Keywords: propolis, antioxidant, nanoemulsion, irritation test

Procedia PDF Downloads 304
1479 Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species

Authors: S. Kumar, R. Sultana

Abstract:

This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.

Keywords: acridid, agriculture, formulation, grasshoppers

Procedia PDF Downloads 257
1478 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation

Procedia PDF Downloads 300
1477 A Novel Integration of Berth Allocation, Quay Cranes and Trucks Scheduling Problems in Container Terminals

Authors: M. Moharami Gargari, S. Javdani Zamani, A. Mohammadnejad, S. Abuali

Abstract:

As maritime container transport is developing fast, the need arises for efficient operations at container terminals. One of the most important determinants of container handling efficiency is the productivity of quay cranes and internal transportation vehicles, which are responsible transporting of containers for unloading and loading operations for container vessels. For this reason, this paper presents an integrated mathematical model formulation for discrete berths with quay cranes and internal transportations vehicles. The problems have received increasing attention in the literature and the present paper deals with the integration of these interrelated problems. A new mixed integer linear formulation is developed for the Berth Allocation Problem (BAP), Quay Crane Assignment and Scheduling Problem (QCASP) and Internal Transportation Scheduling (ITS), which accounts for cranes and trucks positioning conditions.

Keywords: discrete berths, container terminal, truck scheduling, dynamic vessel arrival

Procedia PDF Downloads 400
1476 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 66
1475 Formulation and Characterization of Antimicrobial Chewing Gum Delivery of Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Vidhi Guha, Udit N. Soni, Jay Ram Patel

Abstract:

Chewing gums are mobile novel drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via the buccal route. An antimicrobial chewing gum delivery system of the methanolic extracts of Beatea monosperma (barks and twigs), Cordia obliqua (leaves and seeds) and Cuminun cyminum (seeds) against periodontal diseases caused by some oral pathogens, was designed and characterized on various parameters.The results of the study support the traditional application of the plants and suggest, plant extracts possess compounds with antimicrobial properties that can be used as potential antimicrobial agents and gums can be a good carrier of herbal extracts. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations chewing gums including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: periodontal diseases, herbal chewing gum, herbal extracts, novel drug delivery systems

Procedia PDF Downloads 394
1474 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery

Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand

Abstract:

Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.

Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles

Procedia PDF Downloads 418
1473 Development and Evaluation of Economical Self-cleaning Cement

Authors: Anil Saini, Jatinder Kumar Ratan

Abstract:

Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.

Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination

Procedia PDF Downloads 169
1472 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: curved beam, dynamic analysis, elastic foundation, finite element method

Procedia PDF Downloads 344
1471 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 75
1470 Characterization and Antimicrobial Properties of Functional Polypropylene Films Incorporated with AgSiO2, AgZn, and AgZ Useful as Returnable Packaging in Seafood Distribution

Authors: Suman Singh, Myungho Lee, Insik Park, Yangjai Shin, Youn Suk Lee

Abstract:

Active antimicrobial films prepared by incorporating AgSiO2, AgZn, and AgZ at 1%, 3%, 5%, 10% (w/w) into polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization were carried out of all formulations and determined the antimicrobial efficiency and returnable antimicrobial efficiency according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50% antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn, and AgZ particles could provide a significant contribution to the quality and safety of seafood in the distribution chain.

Keywords: antimicrobial film, properties and characterization, returnable packaging, sea food

Procedia PDF Downloads 364
1469 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 427
1468 Implicit and Explicit Mechanisms of Emotional Contagion

Authors: Andres Pinilla Palacios, Ricardo Tamayo

Abstract:

Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.

Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation

Procedia PDF Downloads 316
1467 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 374