Search results for: dry chemical fire extinguisher inspection equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6597

Search results for: dry chemical fire extinguisher inspection equipment

6417 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.

Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 495
6416 Reliability Study of Steel Headed Stud Shear Connector Exposed to Fire

Authors: Idris Haruna Muhammad, Okorie Austine Uche

Abstract:

This paper presents a study on reliability of shear connector exposed to fire situation in accordance with Eurocode 4. The reliability analysis i reliability analysis is based on First Order Second Moment Integration Technique (FOSMIT) using FORM 5. Performance functions for shear connector are derived for normal and under fire condition and their implied safety levels are evaluated. Four (4) design variables which include ultimate tensile strength, diameter of the stud, temperature and span of the steel beam are treated as random variables with their statistical characteristic adopted from literature. Results show that for normal condition the β – value decrease from 7.95 to 5.43 which show it is conservative in safety level for normal condition. Under fire condition, β – value decrease from 2.88 to – 0.32 with corresponding load ratio of 0.2 to 1.2. It was also shown from sensitivity assessment, that the temperature and span of the beam decrease with increase in their β – values while ultimate tensile strength and diameter of the stud increase with increase in their β – values for a given load ratio of 0.2 to 1.2.

Keywords: Composite steel beam, Fire condition, Shear stud, Sensitivity study

Procedia PDF Downloads 503
6415 Some Codes for Variants in Graphs

Authors: Sofia Ait Bouazza

Abstract:

We consider the problem of finding a minimum identifying code in a graph. This problem was initially introduced in 1998 and has been since fundamentally connected to a wide range of applications (fault diagnosis, location detection …). Suppose we have a building into which we need to place fire alarms. Suppose each alarm is designed so that it can detect any fire that starts either in the room in which it is located or in any room that shares a doorway with the room. We want to detect any fire that may occur or use the alarms which are sounding to not only to not only detect any fire but be able to tell exactly where the fire is located in the building. For reasons of cost, we want to use as few alarms as necessary. The first problem involves finding a minimum domination set of a graph. If the alarms are three state alarms capable of distinguishing between a fire in the same room as the alarm and a fire in an adjacent room, we are trying to find a minimum locating domination set. If the alarms are two state alarms that can only sound if there is a fire somewhere nearby, we are looking for a differentiating domination set of a graph. These three areas are the subject of much active research; we primarily focus on the third problem. An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most r≥1 from x. When only vertices out of the code are asked to be identified, we get the related concept of a locating dominating set. The problem of finding an identifying code (resp a locating dominating code) of minimum size is a NP-hard problem, even when the input graph belongs to a number of specific graph classes. Therefore, we study this problem in some restricted classes of undirected graphs like split graph, line graph and path in a directed graph. Then we present some results on the identifying code by giving an exact value of upper total locating domination and a total 2-identifying code in directed and undirected graph. Moreover we determine exact values of locating dominating code and edge identifying code of thin headless spider and locating dominating code of complete suns.

Keywords: identiying codes, locating dominating set, split graphs, thin headless spider

Procedia PDF Downloads 461
6414 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 21
6413 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment

Authors: Rade M. Ciric, Sasa Mandic

Abstract:

Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.

Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work

Procedia PDF Downloads 442
6412 GIS-Based Automatic Flight Planning of Camera-Equipped UAVs for Fire Emergency Response

Authors: Mohammed Sulaiman, Hexu Liu, Mohamed Binalhaj, William W. Liou, Osama Abudayyeh

Abstract:

Emerging technologies such as camera-equipped unmanned aerial vehicles (UAVs) are increasingly being applied in building fire rescue to provide real-time visualization and 3D reconstruction of the entire fireground. However, flight planning of camera-equipped UAVs is usually a manual process, which is not sufficient to fulfill the needs of emergency management. This research proposes a Geographic Information System (GIS)-based approach to automatic flight planning of camera-equipped UAVs for building fire emergency response. In this research, Haversine formula and lawn mowing patterns are employed to automate flight planning based on geometrical and spatial information from GIS. The resulting flight mission satisfies the requirements of 3D reconstruction purposes of the fireground, in consideration of flight execution safety and visibility of camera frames. The proposed approach is implemented within a GIS environment through an application programming interface. A case study is used to demonstrate the effectiveness of the proposed approach. The result shows that flight mission can be generated in a timely manner for application to fire emergency response.

Keywords: GIS, camera-equipped UAVs, automatic flight planning, fire emergency response

Procedia PDF Downloads 104
6411 Investigations of Flame Retardant Properties of Beneficiated Huntite and Hydromagnesite Mineral Reinforced Polymer Composites

Authors: H. Yilmaz Atay

Abstract:

Huntite and hydromagnesite minerals have been used as additive materials to achieve incombustible material due to their inflammability property. Those fire retardants materials can help to extinguish in the early stages of fire. Thus dispersion of the flame can be prevented even if the fire started. Huntite and hydromagnesite minerals are known to impart fire-proofing of the polymer composites. However, the additives used in the applications led to deterioration in the mechanical properties due to the usage of high amount of the powders in the composites. In this study, by enriching huntite and hydromagnesite, it was aimed to use purer minerals to reinforce the polymer composites. Thus, predictably, using purer mineral will lead to use lower amount of mineral powders. By this manner, the minerals free from impurities by various processes were added to the polymer matrix with different loading level and grades. Different types of samples were manufactured, and subsequently characterized by XRD, SEM-EDS, XRF and flame-retardant tests. Tensile strength and elongation at break values were determined according to loading levels and grades. Besides, a comparison on the properties of the polymer composites produced by using of minerals with and without impurities was performed. As a result of the work, it was concluded that it is required to use beneficiated minerals to provide better fire-proofing behaviors in the polymer composites.

Keywords: flame retardant, huntite and hydromagnesite, mechanical property, polymer composites

Procedia PDF Downloads 224
6410 New Types of Fitness Equipment for Seniors-Based on Beginning Movement Load Training

Authors: Chia-Chi Chen, Tai-Sheng Huang

Abstract:

Ageing society has been spread around the world. The global population is not only ageing but also declining. The structure of population has changed, which has a significant impact on both the economies and industries. Thus, how to be a healthy senior citizen to relieve the burden to the family and society will be a popular issue. Although fitness equipment manufacturing industry has been mature, the ageing population is still increasing. Therefore, this study aims to design an innovative style of fitness equipment for senior citizens, based on BMLT presented by Dr. Koyama Hirofumi. The analysis of current fitness equipment on the market and the future trend will be applied in the study. With the coming of information age, senior citizens in the future are the users of information product for sure, and the new style of fitness equipment will be combined with information technology as well. Through this study, it is believed to design an innovative style of fitness equipment for seniors and help them live heartier and happier lives.

Keywords: aging society, BMLT (Beginning Movement Load Training), seniors, new style of fitness equipment

Procedia PDF Downloads 197
6409 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 350
6408 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 70
6407 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 239
6406 Formal Models of Sanitary Inspections Teams Activities

Authors: Tadeusz Nowicki, Radosław Pytlak, Robert Waszkowski, Jerzy Bertrandt, Anna Kłos

Abstract:

This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.

Keywords: food-borne disease, epidemic, sanitary inspection, mathematical models

Procedia PDF Downloads 288
6405 Design and Analysis of a Lightweight Fire-Resistant Door

Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 66
6404 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire

Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz

Abstract:

This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.

Keywords: Fire for Effect, Application, Fire Control, Interpolation method, Software development.

Procedia PDF Downloads 299
6403 Inspection of Railway Track Fastening Elements Using Artificial Vision

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux

Abstract:

In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.

Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network

Procedia PDF Downloads 432
6402 Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller

Authors: Ian A. Grout

Abstract:

In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI).

Keywords: control, hand gesture, human computer interaction, test equipment

Procedia PDF Downloads 302
6401 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection

Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda

Abstract:

The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.

Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point

Procedia PDF Downloads 412
6400 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 166
6399 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors

Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob

Abstract:

Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.

Keywords: technical, environmental, healthcare, characteristic of medical equipment

Procedia PDF Downloads 137
6398 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy

Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu

Abstract:

The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.

Keywords: complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment

Procedia PDF Downloads 248
6397 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda

Authors: Charles Owenda Omulo

Abstract:

This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.

Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety

Procedia PDF Downloads 41
6396 Fire Safety Assessment of At-Risk Groups

Authors: Naser Kazemi Eilaki, Carolyn Ahmer, Ilona Heldal, Bjarne Christian Hagen

Abstract:

Older people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to safe places. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. This research deals with the fire safety of mentioned people's buildings by means of probabilistic methods. For this purpose, fire safety is addressed by modeling the egress of our target group from a hazardous zone to a safe zone. A common type of detached house with a prevalent plan has been chosen for safety analysis, and a limit state function has been developed according to the time-line evacuation model, which is based on a two-zone and smoke development model. An analytical computer model (B-Risk) is used to consider smoke development. Since most of the involved parameters in the fire development model pose uncertainty, an appropriate probability distribution function has been considered for each one of the variables with indeterministic nature. To achieve safety and reliability for the at-risk groups, the fire safety index method has been chosen to define the probability of failure (causalities) and safety index (beta index). An improved harmony search meta-heuristic optimization algorithm has been used to define the beta index. Sensitivity analysis has been done to define the most important and effective parameters for the fire safety of the at-risk group. Results showed an area of openings and intervals to egress exits are more important in buildings, and the safety of people would improve with increasing dimensions of occupant space (building). Fire growth is more critical compared to other parameters in the home without a detector and fire distinguishing system, but in a home equipped with these facilities, it is less important. Type of disabilities has a great effect on the safety level of people who live in the same home layout, and people with visual impairment encounter more risk of capturing compared to visual and movement disabilities.

Keywords: fire safety, at-risk groups, zone model, egress time, uncertainty

Procedia PDF Downloads 86
6395 Progressive Type-I Interval Censoring with Binomial Removal-Estimation and Its Properties

Authors: Sonal Budhiraja, Biswabrata Pradhan

Abstract:

This work considers statistical inference based on progressive Type-I interval censored data with random removal. The scheme of progressive Type-I interval censoring with random removal can be described as follows. Suppose n identical items are placed on a test at time T0 = 0 under k pre-fixed inspection times at pre-specified times T1 < T2 < . . . < Tk, where Tk is the scheduled termination time of the experiment. At inspection time Ti, Ri of the remaining surviving units Si, are randomly removed from the experiment. The removal follows a binomial distribution with parameters Si and pi for i = 1, . . . , k, with pk = 1. In this censoring scheme, the number of failures in different inspection intervals and the number of randomly removed items at pre-specified inspection times are observed. Asymptotic properties of the maximum likelihood estimators (MLEs) are established under some regularity conditions. A β-content γ-level tolerance interval (TI) is determined for two parameters Weibull lifetime model using the asymptotic properties of MLEs. The minimum sample size required to achieve the desired β-content γ-level TI is determined. The performance of the MLEs and TI is studied via simulation.

Keywords: asymptotic normality, consistency, regularity conditions, simulation study, tolerance interval

Procedia PDF Downloads 229
6394 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident

Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen

Abstract:

In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.

Keywords: RASCAL, UF₆, safety, hydrogen fluoride

Procedia PDF Downloads 198
6393 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel

Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee

Abstract:

Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.

Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity

Procedia PDF Downloads 449
6392 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 345
6391 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 109
6390 Simulation of Forest Fire Using Wireless Sensor Network

Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal

Abstract:

In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.

Keywords: forest fire monitor, humidity, wind direction, wireless sensor network

Procedia PDF Downloads 429
6389 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 193
6388 Relationship between Perceived Level of Emotional Intelligence and Organizational Role Stress of Fire Fighters in Mumbai

Authors: Payal Maheshwari, Bansari Shah

Abstract:

The research aimed to study the level of emotional intelligence (EI) and organizational role stress (ORS) of fire-fighters and the relationship between the two variables. Hundred and twenty fire-fighters were selected from different fire stations of Mumbai by purposive sampling. The firefighters who had the basic training, a minimum experience of 2 years and had been on the field during a crisis situation were selected for the study. The firefighters selected ranged from 23-58 years of age, and the number of years of experience ranged from 2 to 33 years. The findings of the study revealed that majority of the firefighters perceived themselves to be at an above average (57) and high (58) level of EI (M=429.35, SD=38.712). Domain-wise analysis disclosed that compared to self-awareness (92) and relationship management (93), more number of participants perceived themselves in the high category in the domains of self-management (108) and social management (106). Further, examination of the subdomain scores conveyed that a large number of participants rated themselves in the average level of these skills of accurate self-assessment (50), emotional self-control (50), adaptability (56) initiative (41), influence (66), change catalyst (53), and conflict management (50). With relation to the stress variable, it was found that almost half the number of the participants (59) rated themselves as having an average level of stress (M=137.44, SD=28.800). In most of the domains, majority of the participants perceived themselves as having an average level of stress, while in the domain of role isolation, self-role distance, and role ambiguity, majority of the firefighters rated themselves as having a low level of stress. A strong negative correlation (r=-.360**, p=.000) was found between EI and ORS. This study is a contribution to the literature and has implications for fire-fighters at the personal level, for the policymakers, and the fire department.

Keywords: emotional intelligence, organizational role stress, firefighters, relationship

Procedia PDF Downloads 100