Search results for: chemical strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7702

Search results for: chemical strength

7522 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers

Authors: Jacqueline Michella Anak Nathen

Abstract:

Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.

Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser

Procedia PDF Downloads 73
7521 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene

Authors: Salihu Takuma

Abstract:

Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.

Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus

Procedia PDF Downloads 213
7520 Manufacturing Process of Rubber Cement Composite Paver Block

Authors: Ratnadip Natwarbhai Bhoi

Abstract:

The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications.

Keywords: rubber cement, crumb rubber, composite, layer

Procedia PDF Downloads 73
7519 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: compressive strength, GGBS, normal concrete, self-consolidating concrete

Procedia PDF Downloads 409
7518 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 324
7517 Variations of Testing Concrete Mechanical Properties by European Standard and American Code

Authors: Ahmed M. Seyam, Rita Nemes, Salem Georges Nehme

Abstract:

Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them.

Keywords: concrete, ASTM, EU standards, compressive strength, flexural strength, modulus of elasticity

Procedia PDF Downloads 69
7516 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: bar mill, design of experiment, taguchi, yield strength

Procedia PDF Downloads 221
7515 Proposition Model of Micromechanical Damage to Predict Reduction in Stiffness of a Fatigued A-SMC Composite

Authors: Houssem Ayari

Abstract:

Sheet molding compounds (SMC) are high strength thermoset moulding materials reinforced with glass treated with thermocompression. SMC composites combine fibreglass resins and polyester/phenolic/vinyl and unsaturated acrylic to produce a high strength moulding compound. These materials are usually formulated to meet the performance requirements of the moulding part. In addition, the vinyl ester resins used in the new advanced SMC systems (A-SMC) have many desirable features, including mechanical properties comparable to epoxy, excellent chemical resistance and tensile resistance, and cost competitiveness. In this paper, a proposed model is used to take into account the Young modulus evolutions of advanced SMC systems (A-SMC) composite under fatigue tests. The proposed model and the used approach are in good agreement with the experimental results.

Keywords: composites SFRC, damage, fatigue, Mori-Tanaka

Procedia PDF Downloads 98
7514 An Assessment of the Anthropometric Characteristics of Malaysian Cricket Batsmen

Authors: Muhammad Zia ul Haq, Ong Kuan Boon, Jeffrey Low Fook Lee, Bendri Bin Dasril, Amna Iqbal, Muhammad Saleem

Abstract:

This study is bond of two purpose, first is to establish the anthropometric profile of Malaysian cricket batsmen and second, to find the variances among the anthropometric characteristics of ten under-16 years, eight under-19 years and eight senior teams batsmen. The anthropometric variables were measured as 8 skinfolds, 12 circumferences, 06 lengths and 05 breadths, stature, sitting height, arm span, body mass, hand grip strength and leg strength. The batsmen of under-19 and under-16 found similar in skinfolds, sum of skinfolds, circumferences and breadth measurements but significantly lesser than the senior team batsmen. Senior and Under-19 batsmen were almost found similar in segmental lengths, heights and arm span but significantly higher than the under-16 batsmen. Breadth measurements the under-19 found higher than the senior and u-16 batsmen. The hand grips strength of the senior batsmen significantly high than the uder-19 and under-16 players and both groups were similar and no significant difference were found in leg strength of all three groups batsmen. Leg strength were found significant correlation with wrist, hip, thigh, and calf girth and handgrip strength. The hand grip strength were found correlated with all variables except biceps, mid-thigh skinfold, segmental length, humerus breadth. It is concluded from the present study that the girth segments and hand grip strength are the predictors of good performance in cricket batting.

Keywords: cricket batting, batsmen, anthropometry, body segments, hand grip strength

Procedia PDF Downloads 558
7513 Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone

Authors: Tahar Ayadat

Abstract:

The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer.

Keywords: correlation, shear strength, clay, vane test, Swedish cone

Procedia PDF Downloads 376
7512 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 542
7511 Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers.

Keywords: bond strength, fatigue, Lap splice, FRp wrapping

Procedia PDF Downloads 465
7510 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.

Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability

Procedia PDF Downloads 310
7509 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 294
7508 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 342
7507 The Mechanical Strength and Durability of High Performance Concrete Using Local Materials

Authors: I. Guemidi, Y. Abdelaziz, T. Rikioui

Abstract:

In this work, an experimental investigation was carried out to evaluate the mechanical and durability properties of high performance concretes (HPC) containing local southwest Algerian materials. The mechanical properties were assessed from the compressive strength and the flexural strength, whilst the durability characteristics were investigated in terms of sulphate attack. The results obtained allow us to conclude that it is possible to make a high performance concrete (HPC) based on existing materials in the local market, if these are carefully selected and properly mixed in such away to optimize grain size distribution.

Keywords: durability, high performance concrete, high strength, local materials, Southwest Algerian, sulphate attack

Procedia PDF Downloads 363
7506 Effect of the Velocity Resistance Training on Muscular Fitness and Functional Performance in Older Women

Authors: Jairo Alejandro Fernandez Ortega

Abstract:

Objective: Regarding effects of training velocity on strength in the functional condition of older adults controversy exists. The purpose of this study was to examine the effects of a twelve-week strength training program (PE) performed at high speed (GAV) versus a traditionally executed program (GBV), on functional performance, maximum strength and muscle power in a group of older adult women. Methodology: 86 women aged between 60-81 years participated voluntarily in the study and were assigned randomly to the GAV (three series at 40% 1RM at maximum speed, with maximum losses of 10% speed) or to the GBV (three series with three sets at 70% of 1RM). Both groups performed three weekly trainings. The maximum strength of upper and lower limbs (1RM), prehensile strength, walking speed, maximum power, mean propulsive velocity (MPV) and functional performance (senior fitness test) were evaluated before and after the PE. Results: Significant improvements were observed (p < 0.05) in all the tests in the two groups after the twelve weeks of training. However, the results of GAV were significantly (P < 0.05) higher than those of the GBV, in the tests of agility and dynamic equilibrium, stationary walking, sitting and standing, walking speed over 4 and 6 meters, MPV and peak power. In the tests of maximum strength and prehensile force, the differences were not significant. Conclusion: Strength training performed at high speeds seems to have a better effect on functional performance and muscle power than strength training performed at low speed.

Keywords: power training, resistance exercise, aging, strength, physical performance, high-velocity, resistance training

Procedia PDF Downloads 98
7505 Effect of Clay Content on the Drained Shear Strength

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: clay, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 417
7504 Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Ina Pundiene, Daira Erdmane

Abstract:

The aim of this research is to estimate effect of pozzolanic substitutes and their combination on the hydration heat and final strength of high performance concrete. Ternary cementitious systems with different ratios of ordinary Portland cement, silica fume and calcined clay were investigated. Local illite clay was calcined at temperature 700oC in rotary furnace for 20 min. It has been well recognized that the use of pozzolanic materials such as silica fume or calcined clay are recommended for high performance concrete for reduction of porosity, increasing density and as a consequence raising the chemical durability of the concrete. It has been found, that silica fume has a superior influence on the strength development of concrete, but calcined clay increase density and decrease size of dominating pores. Additionally it was found that the rates of pozzolanic reaction and calcium hydroxide consumption in the silica fume-blended cement pastes are higher than in the illite clay-blended cement pastes, it strongly depends from the amount of pozzolanic substitutes which are used. If the pozzolanic reaction is dominating then amount of Ca(OH)2 is decreasing. The identity and the amount of the phases present were determined from the thermal analysis (DTA) data. The hydration temperature of blended cement pastes was measured during the first 24 hours. Fresh and hardened concrete properties were tested. Compressive strength was determined and differential thermal analysis (DTA) was conducted of specimens at the age of 3, 14, 28 and 56 days.

Keywords: high performance concrete, pozzolanic additives, silica fume, ternary systems

Procedia PDF Downloads 354
7503 Composite Materials from Beer Bran Fibers and Polylactic Acid: Characterization and Properties

Authors: Camila Hurtado, Maria A. Morales, Diego Torres, L.H. Reyes, Alejandro Maranon, Alicia Porras

Abstract:

This work presents the physical and chemical characterization of beer brand fibers and the properties of novel composite materials made of these fibers and polylactic acid (PLA). Treated and untreated fibers were physically characterized in terms of their moisture content (ASTM D1348), density, and particle size (ASAE S319.2). A chemical analysis following TAPPI standards was performed to determine ash, extractives, lignin, and cellulose content on fibers. Thermal stability was determined by TGA analysis, and an FTIR was carried out to check the influence of the alkali treatment in fiber composition. An alkali treatment with NaOH (5%) of fibers was performed for 90 min, with the objective to improve the interfacial adhesion with polymeric matrix in composites. Composite materials based on either treated or untreated beer brand fibers and polylactic acid (PLA) were developed characterized in tension (ASTM D638), bending (ASTM D790) and impact (ASTM D256). Before composites manufacturing, PLA and brand beer fibers (10 wt.%) were mixed in a twin extruder with a temperature profile between 155°C and 180°C. Coupons were manufactured by compression molding (110 bar) at 190°C. Physical characterization showed that alkali treatment does not affect the moisture content (6.9%) and the density (0.48 g/cm³ for untreated fiber and 0.46 g/cm³ for the treated one). Chemical and FTIR analysis showed a slight decrease in ash and extractives. Also, a decrease of 47% and 50% for lignin and hemicellulose content was observed, coupled with an increase of 71% for cellulose content. Fiber thermal stability was improved with the alkali treatment at about 10°C. Tensile strength of composites was found to be between 42 and 44 MPa with no significant statistical difference between coupons with either treated or untreated fibers. However, compared to neat PLA, composites with beer bran fibers present a decrease in tensile strength of 27%. Young modulus increases by 10% with treated fiber, compared to neat PLA. Flexural strength decreases in coupons with treated fiber (67.7 MPa), while flexural modulus increases (3.2 GPa) compared to neat PLA (83.3 MPa and 2.8 GPa, respectively). Izod impact test results showed an improvement of 99.4% in coupons with treated fibers - compared with neat PLA.

Keywords: beer bran, characterization, green composite, polylactic acid, surface treatment

Procedia PDF Downloads 109
7502 The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre

Authors: Sepehr Moradi

Abstract:

This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre.

Keywords: single animal fibre fractionation, actual length groups, strength variation, length-diameter groups, diameter variation along fibre

Procedia PDF Downloads 178
7501 Four-Week Plyometric and Resistance Training on Muscle Strength and Sprint Performance in Wheelchair Racing Athletes

Authors: K. Thawichai, R. Pornthep

Abstract:

The purpose of this study was to compare the effects of a four week training period of combined plyometric and resistance training or resistance training alone on muscle strength and sprint performance in wheelchair racing athletes. The participants were sixteen healthy male wheelchair racing athletes of the Thai national team. All participants were randomly assignments into two groups in the plyometric and resistance training group (n = 8) performed plyometric exercises followed by resistance training, whereas the resistance training group (n = 8) performed static stretching and the same resistance training program. At baseline and after training all participants were tested on 1-RM bench press for muscle strength and 100-m cycling sprint performance. The results of this study show that the plyometric and resistance training group made significantly greater improvements in overall muscle strength and sprint performance than the resistance training group following training. In conclusion, these findings suggest that the addition of a four week plyometric and resistance training program more beneficial than resistance training alone on muscle strength and sprint performance in wheelchair racing athletes.

Keywords: plyometric, resistance training, strength, sprint, wheelchair athletes

Procedia PDF Downloads 517
7500 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 58
7499 Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars

Authors: Olubajo Olumide Olu

Abstract:

This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa.

Keywords: metakaolin, rice husk ash, compressive strength, ternary mortar, curing days

Procedia PDF Downloads 320
7498 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 411
7497 Modeling Aggregation of Insoluble Phase in Reactors

Authors: A. Brener, B. Ismailov, G. Berdalieva

Abstract:

In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.

Keywords: binary aggregation, clusters, chemical reactions, insoluble phases

Procedia PDF Downloads 289
7496 Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment

Authors: Xuan Sun, Mingbo Tong

Abstract:

In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research.

Keywords: carbon fiber, hydrothermal environment, fatigue, residual compressive strength

Procedia PDF Downloads 462
7495 An Evaluation of the Influence of Corn Cob Ash on the Strength Parameters of Lateritic SoiLs

Authors: O. A. Apampa, Y. A. Jimoh

Abstract:

The paper reports the investigation of Corn Cob Ash as a chemical stabilizing agent for laterite soils. Corn cob feedstock was obtained from Maya, a rural community in the derived savannah agro-ecological zone of South-Western Nigeria and burnt to ashes of pozzolanic quality. Reddish brown silty clayey sand material characterized as AASHTO A-2-6(3) lateritic material was obtained from a borrow pit in Abeokuta and subjected to strength characterization tests according to BS 1377: 2000. The soil was subsequently mixed with CCA in varying percentages of 0-7.5% at 1.5% intervals. The influence of CCA stabilized soil was determined for the Atterberg limits, compaction characteristics, CBR and the unconfined compression strength. The tests were repeated on laterite cement-soil mixture in order to establish a basis for comparison. The result shows a similarity in the compaction characteristics of soil-cement and soil-CCA. With increasing addition of binder from 1.5% to 7.5%, Maximum Dry Density progressively declined while the OMC steadily increased. For the CBR, the maximum positive impact was observed at 1.5% CCA addition at a value of 85% compared to the control value of 65% for the cement stabilization, but declined steadily thereafter with increasing addition of CCA, while that of soil-cement continued to increase with increasing addition of cement beyond 1.5% though at a relatively slow rate. Similar behavior was observed in the UCS values for the soil-CCA mix, increasing from a control value of 0.4 MN/m2 to 1.0 MN/m2 at 1.5% CCA and declining thereafter, while that for soil-cement continued to increase with increasing cement addition, but at a slower rate. This paper demonstrates that CCA is effective for chemical stabilization of a typical Nigerian AASHTO A-2-6 lateritic soil at maximum stabilizer content limit of 1.5% and therefore recommends its use as a way of finding further application for agricultural waste products and achievement of environmental sustainability in line with the ideals of the millennium development goals because of the economic and technical feasibility of the processing of the cobs from corn.

Keywords: corn cob ash, pozzolan, cement, laterite, stabilizing agent, cation exchange capacity

Procedia PDF Downloads 275
7494 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.

Keywords: high temperature, compressive strength, mass loss, ultrasonic pulse velocity

Procedia PDF Downloads 325
7493 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers

Authors: Salahaldein Alsadey, Issa Amaish

Abstract:

Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber.

Keywords: sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management

Procedia PDF Downloads 46