Search results for: UV/visible
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 921

Search results for: UV/visible

741 Investigation of Bird Impact on Tailplane

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

The typical airplane stabilizer structures consist of two main similar segments (outer and inner parts), one of them a little larger than the other. In this study, bird impact on four different spots of the stabilizer structure: (a) between two ribs of smaller segment, (b) between two ribs of larger segment, (c) on the rib connecting the two segments, and (d) on a middle rib of the smaller segment, is investigated and their results are compared by means of energy absorption, displacement, and bird’s mass diagrams as well as visible damage induced on the stabilizer structure.

Keywords: airplane, bird strike, LS-DYNA, stabilizer

Procedia PDF Downloads 404
740 Collective Actions of the Women in Black of the Gaza Strip

Authors: Lina Fernanda González

Abstract:

Through this essay, an attempt will be made to make visible the work of the international network of the Women in Black (henceforth WB), on the one hand. On the other hand, the work of Women International Courts as a political practice will be showed as well, focusing their work into generating a collective identity - becoming thusly a peace building space, rescuing in this way the symbolic value of their practices consisting in peaceful resistance as political scenarios, that serve, too, a pedagogical and healing purposes.

Keywords: collective actions, women, peace, human rights and humanitarian international law

Procedia PDF Downloads 396
739 Study of the Morphological and Optical Properties of Nanometric NiO

Authors: Nassima Hamzaoui, Mostefa Ghamnia

Abstract:

Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.

Keywords: films, NiO, AFM, X-ray diffraction

Procedia PDF Downloads 60
738 Use of Information Technology in the Government of a State

Authors: Pavel E. Golosov, Vladimir I. Gorelov, Oksana L. Karelova

Abstract:

There are visible changes in the world organization, environment and health of national conscience that create a background for discussion on possible redefinition of global, state and regional management goals. Authors apply the sustainable development criteria to a hierarchical management scheme that is to lead the world community to non-contradictory growth. Concrete definitions are discussed in respect of decision-making process representing the state mostly. With the help of system analysis it is highlighted how to understand who would carry the distinctive sign of world leadership in the nearest future.

Keywords: decision-making, information technology, public administration

Procedia PDF Downloads 512
737 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 79
736 Structural and Optical Study of Cu doped ZnS Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: Hamid Merzouk, D. T. Talantikite, H. Haddad, Amel Tounsi

Abstract:

ZnS is an important II-VI binary compound with large band-gap energy at room temperature. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. The depositions are performed by a simple chemical bath deposition route. Structural properties are carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical transmittance is investigated by the UV-visible spectroscopy at room temperature.

Keywords: chemical, bath, method, Cu, doped, ZnS, thin, films

Procedia PDF Downloads 553
735 Eu+3 Ion as a Luminescent Probe in ZrO2: Gd+3 Co-Doped Nanophosphor

Authors: S. Manjunatha, M. S. Dharmaprakash

Abstract:

Well-defined 2D Eu+3 co-doped ZrO2: Gd+3 nanoparticles were successfully synthesized by microwave assisted solution combustion technique for luminescent applications. The present investigation reports the rapid and effective method for the synthesis of the Eu+3 co-doped ZrO2:Gd+3 nanoparticles and study of the luminescence behavior of Eu+3 ion in ZrO2:Gd+3 nanostructures. The optical properties of the prepared nanostructures were investigated by using UV-visible spectroscopy and photoluminescence spectra. The phase formation and the morphology of the nanoplatelets were studied by XRD, FESEM and HRTEM. The average grain size was found to be 45-50 nm. The presence of Gd3+ ion increases the crystallinity of the material and hence acts as a good nucleating agent. The ZrO2:Gd3+ co-doped with Eu+3 nanoplatelets gives an emission at 607 nm, a strong red emission under the excitation wavelength of 255 nm.

Keywords: nanoparticles, XRD, TEM, photoluminescence

Procedia PDF Downloads 318
734 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs

Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).

Keywords: woody, vegetation, repeated, photographs

Procedia PDF Downloads 89
733 Invisible Aircraft Using Plasma Display

Authors: C. Ramamoorthy, R. Ranga Raj

Abstract:

In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing.

Keywords: CCD camera, chameleon, invisible, plasma display

Procedia PDF Downloads 403
732 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 217
731 Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: lasers, luminescence, upconversion photonics, rare earth metals

Procedia PDF Downloads 82
730 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering

Authors: Lu-Chen Yeh‚ Jui-Ming Yeh

Abstract:

In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers were characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multi-potentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.

Keywords: electrospun, polyaniline, neural stem cell, differentiation

Procedia PDF Downloads 410
729 An Analysis and Design of Mobile Payment System Based on NFC Technology

Authors: Shafiq ur Rehman, Zubair Ahmed Shaikh

Abstract:

This research provides the comparative study of different mobile payment system and proposes an efficient solution of mobile payment system. The research involves discovering how the mobile payment methods can be used and implemented keeping user and system interaction under consideration. The implementation of Nielsen’s heuristic and universal design principles enhanced the user’s interaction design and made the system more appropriate, understandable and visible to the end user. The design of application is greatly affected by the user driven factors. These factors help in the efficiency of the application usage.

Keywords: mobile payment system, m-commerce, usability, near field communication

Procedia PDF Downloads 452
728 Ant-Tracking Attribute: A Model for Understanding Production Response

Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo

Abstract:

Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.

Keywords: seismic, attributes, production, structural

Procedia PDF Downloads 70
727 Rb-Modified Few-Layered Graphene for Gas Sensing Application

Authors: Vasant Reddy, Shivani A. Singh, Pravin S. More

Abstract:

In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical route, graphene, gas sensing, UV-spectroscopy

Procedia PDF Downloads 269
726 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures

Procedia PDF Downloads 512
725 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 376
724 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 470
723 Impact of Surface Roughness on Light Absorption

Authors: V. Gareyan, Zh. Gevorkian

Abstract:

We study oblique incident light absorption in opaque media with rough surfaces. An analytical approach with modified boundary conditions taking into account the surface roughness in metallic or dielectric films has been discussed. Our approach reveals interference-linked terms that modify the absorption dependence on different characteristics. We have discussed the limits of our approach that hold valid from the visible to the microwave region. Polarization and angular dependences of roughness-induced absorption are revealed. The existence of an incident angle or a wavelength for which the absorptance of a rough surface becomes equal to that of a flat surface is predicted. Based on this phenomenon, a method of determining roughness correlation length is suggested.

Keywords: light, absorption, surface, roughness

Procedia PDF Downloads 54
722 An Organic Dye-Based Staining for Plant DNA

Authors: Begüm Terzi, Özlem Ateş Sönmezoğlu, Kerime Özkay, Ahmet Yıldırım

Abstract:

In plant biotechnology, electrophoresis is used to detect nucleic acids. Ethidium bromide (EtBr) is used as an intercalator dye to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. In this study, a visible, reliable and organic Ruthenium-based dye (N-719) for staining plant DNA in comparison to EtBr. When prestaining and post-staining for gel electrophoresis, N-719 stained both DNA and PCR product bands with the same clarity as EtBr. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. The organic dye was found to have staining activity suitable for the identification of DNA.Consequently, N-719 organic dye can be used to stain and visualize DNA during gel electrophoresis as alternatives to EtBr in plant biotechnology studies.

Keywords: agarose gel, DNA staining, organic dye, N-719

Procedia PDF Downloads 267
721 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique

Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah

Abstract:

Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.

Keywords: gamma irradiation, lead glass, leaching, structural

Procedia PDF Downloads 434
720 Synthesis and Characterization of Some Mono Chloro-S-Triazine Vinyl Sulphone Reactive Dyes

Authors: Nuradeen Abdullahi Nadabo, Kasali Adewale Bello, Chindo Istifanus

Abstract:

A series of ten bi functional mono-chloro-s-triazine vinyl sulphone reactive dyes were synthesized based on H-acid with varied substituents coded as (BRD). These dyes were characterized by IR spectroscopy. The results revealed an incorporation of various substituents. The visible absorption spectra of these dyes were examined in various solvents and results shows positive and negative salvatochromism as the solvent polarity; changes, melting point, percentage yield and molar extinction co-efficient of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyeing.

Keywords: bifunctional, characterization, reactive dyes, synthesis

Procedia PDF Downloads 435
719 Grid Pattern Recognition and Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: grid, computed radiography, pattern recognition, image processing, filtering

Procedia PDF Downloads 283
718 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics

Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo

Abstract:

A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.

Keywords: behavioural biometric, face biometric, neural network, physical biometric, signature biometric

Procedia PDF Downloads 474
717 Na Doped ZnO UV Filters with Reduced Photocatalytic Activity for Sunscreen Application

Authors: Rafid Mueen, Konstantin Konstantinov, Micheal Lerch, Zhenxiang Cheng

Abstract:

In the past two decades, the concern for skin protection from ultraviolet (UV) radiation has attracted considerable attention due to the increased intensity of UV rays that can reach the Earth’s surface as a result of the breakdown of ozone layer. Recently, UVA has also attracted attention, since, in comparison to UVB, it can penetrate deeply into the skin, which can result in significant health concerns. Sunscreen agents are one of the significant tools to protect the skin from UV irradiation, and it is either organic or in organic. Developing of inorganic UV blockers is essential, which provide efficient UV protection over a wide spectrum rather than organic filters. Furthermore inorganic UV blockers are good comfort, and high safety when applied on human skin. Inorganic materials can absorb, reflect, or scatter the ultraviolet radiation, depending on their particle size, unlike the organic blockers, which absorb the UV irradiation. Nowadays, most inorganic UV-blocking filters are based on (TiO2) and ZnO). ZnO can provide protection in the UVA range. Indeed, ZnO is attractive for in sunscreen formulization, and this relates to many advantages, such as its modest refractive index (2.0), absorption of a small fraction of solar radiation in the UV range which is equal to or less than 385 nm, its high probable recombination of photogenerated carriers (electrons and holes), large direct band gap, high exciton binding energy, non-risky nature, and high tendency towards chemical and physical stability which make it transparent in the visible region with UV protective activity. A significant issue for ZnO use in sunscreens is that it can generate ROS in the presence of UV light because of its photocatalytic activity. Therefore it is essential to make a non-photocatalytic material through modification by other metals. Several efforts have been made to deactivate the photocatalytic activity of ZnO by using inorganic surface modifiers. The doping of ZnO by different metals is another way to modify its photocatalytic activity. Recently, successful doping of ZnO with different metals such as Ce, La, Co, Mn, Al, Li, Na, K, and Cr by various procedures, such as a simple and facile one pot water bath, co-precipitation, hydrothermal, solvothermal, combustion, and sol gel methods has been reported. These materials exhibit greater performance than undoped ZnO towards increasing the photocatalytic activity of ZnO in visible light. Therefore, metal doping can be an effective technique to modify the ZnO photocatalytic activity. However, in the current work, we successfully reduce the photocatalytic activity of ZnO through Na doped ZnO fabricated via sol-gel and hydrothermal methods.

Keywords: photocatalytic, ROS, UVA, ZnO

Procedia PDF Downloads 144
716 Implementation of an Associative Memory Using a Restricted Hopfield Network

Authors: Tet H. Yeap

Abstract:

An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.

Keywords: restricted Hopfield network, Lyapunov function, simultaneous perturbation stochastic approximation

Procedia PDF Downloads 133
715 Supports for Student Learning Program: Exploring the Educational Terrain of Newcomer and Refugee Students in Canada

Authors: Edward Shizha, Edward Makwarimba

Abstract:

This literature review explores current research on the educational strengths and barriers of newcomer and refugee youth in Canada. Canada’s shift in immigration policy in the past three decades, from Europe to Asian and African countries as source continents of recent immigrants to Canada, has tremendously increased the ethnic, linguistic, cultural and religious diversity of the population, including that of students in its education system. Over 18% of the country’s population was born in another country, of which 70% are visible minorities. There has been an increase in admitted immigrants and refugees, with a total of 226,203 between July 2020 and June 2021. Newcomer parents and their children in all major destination countries, including Canada, face tremendous challenges, including racism and discrimination, lack of English language skills, poverty, income inequality, unemployment, and underemployment. They face additional challenges, including discrimination against those who cannot speak the official languages, English or French. The severity of the challenges depends on several intersectional factors, including immigrant status (asylum seeker, refugee, or immigrant), age, gender, level of education and others. Through the lens of intersectionality as an explanatory perspective, this literature review examines the educational attainment and outcomes of newcomer and refugee youth in Canada in order to understand their educational needs, educational barriers and strengths. Newcomer youths’ experiences are shaped by numerous intersectional and interconnected sociocultural, sociopolitical, and socioeconomic factors—including gender, migration status, racialized status, ethnicity, socioeconomic class, sexual minority status, age, race—that produce and perpetuate their disadvantage. According to research, immigrants and refugees from visible minority ethnic backgrounds experience exclusions more than newcomers from other backgrounds and groups from the mainstream population. For many immigrant parents, migration provides financial and educational opportunities for their children. Yet, when attending school, newcomer and refugee youth face unique challenges related to racism and discrimination, negative attitudes and stereotypes from teachers and other school authorities, language learning and proficiency, differing levels of acculturation, and different cultural views of the role of parents in relation to teachers and school, and unfamiliarity with the social or school context in Canada. Recognizing discrepancies in educational attainment of newcomer and refugee youth based on their race and immigrant status, the paper develops insights into existing research and data gaps related to educational strengths and challenges for visible minority newcomer youth in Canada. The paper concludes that the educational successes or failures of the newcomer and refugee youth and their settlement and integration into the school system in Canada may depend on where their families settle, the attitudes of the host community and the school officials (teachers, guidance counsellors and school administrators) after-school support programs and their own set of coping mechanisms. Conceivably a unique approach to after-school programming should provide learning supports and opportunities that consider newcomer and refugee youth’s needs, experiences, backgrounds and circumstances. This support is likely to translate into significant academic and psychological well-being of newcomer students.

Keywords: deficit discourse, discrimination, educational outcomes, newcomer and refugee youth, racism, strength-based approach, whiteness

Procedia PDF Downloads 66
714 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 296
713 Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters

Authors: N. Nowzari-Dalini, S. Sabbaghi

Abstract:

Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO2 were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert® software. 98% of phenol degradation was achieved after 6h of irradiation.

Keywords: doping, metals, sol-gel, titanium dioxide, wastewater

Procedia PDF Downloads 328
712 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method

Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel

Abstract:

Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses. Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization. This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.

Keywords: manufacture of lenses, aspherical surface, precision molding, radius of curvature, roughness

Procedia PDF Downloads 467