Search results for: HMI (Human Machine Interface)
11830 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 2211829 An Application of a Machine Monitoring by Using the Internet of Things to Improve a Preventive Maintenance: Case Study of an Automated Plastic Granule-Packing Machine
Authors: Anek Apipatkul, Paphakorn Pitayachaval
Abstract:
Preventive maintenance is a standardized procedure to control and prevent risky problems affecting production in order to increase work efficiency. Machine monitoring also routinely works to collect data for a scheduling maintenance period. This paper is to present the application of machine monitoring by using the internet of things (IOTs) and a lean technique in order to manage with complex maintenance tasks of an automated plastic granule packing machine. To organize the preventive maintenance, there are several processes that the machine monitoring was applied, starting with defining a clear scope of the machine, establishing standards in maintenance work, applying a just-in-time (JIT) technique for timely delivery in the maintenance work, solving problems on the floor, and also improving the inspection process. The result has shown that wasted time was reduced, and machines have been operated as scheduled. Furthermore, the efficiency of the scheduled maintenance period was increased by 95%.Keywords: internet of things, preventive maintenance, machine monitoring, lean technique
Procedia PDF Downloads 10411828 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 27611827 Interface Problems in Construction Projects
Authors: Puti F. Marzuki, Adrianto Oktavianus, Almerinda Regina
Abstract:
Interface problems among interacting parties in Indonesian construction projects have most often led to low productivity and completion delay. In the midst of this country’s needs to accelerate construction of public infrastructure providing connectivity among regions and supporting economic growth as well as better living quality, project delays have to be seriously addressed. This paper identifies potential causes factors of interface problems experienced by construction projects in Indonesia. Data are collected through a survey involving the main actors of six important public infrastructure construction projects including railway, LRT, sports stadiums, apartment, and education building construction projects. Five of these projects adopt the design-build project delivery method and one applies the design-bid-build scheme. Interface problems’ potential causes are categorized into contract, management, technical experience, coordination, financial, and environmental factors. Research results reveal that, especially in railway and LRT projects, potential causes of interface problems are mainly technical and managerial in nature. These relate to complex construction execution in highly congested areas. Meanwhile, coordination cause factors are mainly found in the education building construction project with loan from a foreign donor. All of the six projects have to resolve interface problems caused by incomplete or low-quality contract documents. This research also shows that the design-bid-build delivery method involving more parties in construction projects tends to induce more interface problem cause factors than the design-build scheme.Keywords: cause factors, construction delays, project delivery method, contract documents
Procedia PDF Downloads 25711826 Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels
Authors: Jiahe Ru, Yan Pang, Zhaomiao Liu
Abstract:
Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon.Keywords: neck interface, interface coupling, janus droplets, multiphase flow
Procedia PDF Downloads 13011825 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 20111824 A Study of Evolving Cloud Computing Data Security: A Machine Learning Perspective
Authors: Shinoy Vengaramkode Bhaskaran
Abstract:
The advancement of cloud computing led to a variety of security issues for both consumers and industries. Whereas machine learning (ML) is one approach to securing Cloud-based systems. Various methods have been employed to prevent or detect attacks and security vulnerabilities on the Cloud using ML techniques. In this paper, we present an ML perspective on the methodologies and techniques of cloud security. Initially, an investigative study on cloud computing is conducted with a primary emphasis on the gaps with two research questions that are impeding the adoption of cloud technology, as well as the challenges associated with threat solutions. Next, some ideas are generated based on machine learning methods to mitigate certain types of attacks that are frequently discussed through the application of ML techniques. Finally, we review different machine learning algorithms and their adoption in cloud computing.Keywords: artificial intelligence, machine learning, cloud computing infrastructure as a service, support vector machine, platform as a service
Procedia PDF Downloads 1011823 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 19611822 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 14311821 The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces
Authors: Sathish K. Gurupatham, Farhad Sayedzada, Naji Dauk, Valmiki Sooklal, Laura Ruhala
Abstract:
It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased.Keywords: particle dispersion, capillary force, viscous drag, oscillations
Procedia PDF Downloads 37211820 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors
Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Salleh, Tan Kong Yew
Abstract:
This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.Keywords: readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics
Procedia PDF Downloads 31411819 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 41911818 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems
Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini
Abstract:
Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.Keywords: quantum, machine learning, kernel, non-markovianity
Procedia PDF Downloads 18311817 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 5911816 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine
Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine
Procedia PDF Downloads 25711815 A Method for Multimedia User Interface Design for Mobile Learning
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.Keywords: human-computer interaction, interface design, mobile learning, education
Procedia PDF Downloads 24711814 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors
Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller
Abstract:
In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault
Procedia PDF Downloads 5311813 The Impact of Artificial Intelligence on Human Rights Development
Authors: Kerols Seif Said Botros
Abstract:
The relationship between development and human rights has been debated for a long time. Various principles, from the right to development to development-based human rights, are applied to understand the dynamics between these two concepts. Despite the measures calculated, the connection between enhancement and human rights remains vague. Despite, the connection between these two opinions and the need to strengthen human rights have increased in recent years. It will then be examined whether the right to sustainable development is acceptable or not. In various human rights instruments and this is a good vibe to the request cited above. The book then cites domestic and international human rights treaties, as well as jurisprudence and regulations defining human rights institutions, to support this view.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 5711812 Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper
Authors: O. E. Akay, E. Güzel, M. T. Özcan
Abstract:
The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine.Keywords: kinematic simulation, four bar linkage, harvest mechanization, pepper harvest
Procedia PDF Downloads 34711811 Detect QOS Attacks Using Machine Learning Algorithm
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping
Procedia PDF Downloads 6111810 Analyse of User Interface Design in Mobile Teaching Apps
Authors: Asma Ashoul
Abstract:
Nowadays, smartphones are playing a major role in our lives, by communicating with family, friends or using them to learn different things in life. Using smartphones to learn and teach today is something common to see in places like schools or colleges. Therefore, thinking about developing an app that teaches Arabic language may help some categories in society to learn a second language. For example, kids under the age of five or older would learn fast by using smartphones. The problem is based on the Arabic language, which is most like to be not used anymore. The developer assumed to develop an app that would help the younger generation on their learning the Arabic language. A research was completed about user interface design to help the developer choose appropriate layouts and designs. Developing the artefact contained different stages. First, analyzing the requirements with the client, which is needed to be developed. Secondly, designing the user interface design based on the literature review. Thirdly, developing and testing the application after it is completed contacting all the tools that have been used. Lastly, evaluation and future recommendation, which contained the overall view about the application followed by the client’s feedback. Gathering the requirements after having client meetings based on the interface design. The project was done following an agile development methodology. Therefore, this methodology helped the developer to manage to finish the work on time.Keywords: developer, application, interface design, layout, Agile, client
Procedia PDF Downloads 11611809 Design of Neural Predictor for Vibration Analysis of Drilling Machine
Authors: İkbal Eski
Abstract:
This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.Keywords: artificial neural network, vibration analyses, drilling machine, robust
Procedia PDF Downloads 39611808 Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine
Authors: W. R. Li, J. K. Xia, R. Q. Peng, Z. Y. Guo, L. Jiang
Abstract:
According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine.Keywords: axial end flux leakage, detent force, flux distribution, transverse flux PM linear machine
Procedia PDF Downloads 44911807 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 8511806 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 16911805 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 22711804 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface
Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper
Abstract:
Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding
Procedia PDF Downloads 16811803 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 11111802 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin
Authors: Dibyendu Das, Santanu Kumar Pal
Abstract:
Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide
Procedia PDF Downloads 26611801 Automatic Aggregation and Embedding of Microservices for Optimized Deployments
Authors: Pablo Chico De Guzman, Cesar Sanchez
Abstract:
Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.Keywords: aggregation, deployment, embedding, resource allocation
Procedia PDF Downloads 204