Search results for: Fraudulent pattern recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4125

Search results for: Fraudulent pattern recognition

3945 ANAC-id - Facial Recognition to Detect Fraud

Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira

Abstract:

This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.

Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision

Procedia PDF Downloads 157
3944 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing On Call Centers That Offer Professional Services

Authors: Kiyoko Yoshimura, Yasunobu Kino

Abstract:

Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) The intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) no direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, "consideration for colleagues" influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors "customer-oriented emotional expression" and "emotional disharmony" have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.

Keywords: call center, emotional labor, professional service, job satisfaction, customer feedback

Procedia PDF Downloads 115
3943 Distorted Document Images Dataset for Text Detection and Recognition

Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan

Abstract:

With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.

Keywords: document analysis, open dataset, optical character recognition, text detection

Procedia PDF Downloads 175
3942 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 426
3941 Recognition and Enforcement of Foreign Decree Divorces in India with Special Reference to the Hindu Marriage Act, 1955

Authors: Poonamdeep kaur

Abstract:

With the increase in number of Non-Resident Indian marriages there is also increase in foreign decree divorces which inevitably causes the problem of recognition and enforcement of foreign judgments in India. The Hindus in India are governed by the Hindu Marriage Act, 1956. According to the said Act the courts in India have jurisdiction to try the matrimonial dispute if the marriage is performed in India or the parties to the marriage have domicile in India irrespective of their nationality status. But, sometimes one of the parties to the marriage whose marriage is solemnized in India obtains divorce in foreign courts and prays for the recognition and enforcement of such divorce in India. In such case section 13 of the Indian Civil Procedure Code, 1908, comes into play for the recognition and enforcement of foreign divorces in India. The section makes a foreign judgment conclusive in India subject to the fulfilment of certain conditions. Even if a foreign decree divorce is given on personal connecting factors of the parties to the matrimonial dispute like domicile, such divorce may still be refused recognition in India by virtue of section 13 of the Indian Civil Procedure Code, 1908. It is a universal truth that municipal law of countries is not the same throughout the world. Comity plays an important role in recognition and enforcing a foreign judgment, but, now in India the principle is not applied mechanically as the divorce matter is dealt strictly with regard to Indian Law. So in this paper there will be deep analysis of Indian case laws relating to recognition and enforcement of foreign divorces and based on this a comparative study will be made with the laws of Canada and England on the same subject to find out whether the Indian law on recognition and Enforcement of foreign judgment are in line with the laws of Canada and England and whether in recent years the Indian courts have evolved some new principles of private international law to deal with limping marriages. At last conclusions will be drawn out from the comparative study and suggestions would be given to make the rules of recognition and enforcement of foreign judgments on divorce more certain.

Keywords: divorce, foreign decree, private international law, recognition and enforcement of foreign judgment

Procedia PDF Downloads 192
3940 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 365
3939 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 74
3938 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition

Procedia PDF Downloads 338
3937 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 192
3936 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 497
3935 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 482
3934 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver

Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou

Abstract:

Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.

Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver

Procedia PDF Downloads 159
3933 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)

Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim

Abstract:

This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.

Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm

Procedia PDF Downloads 402
3932 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax

Procedia PDF Downloads 148
3931 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 80
3930 Hand Gesture Recognition Interface Based on IR Camera

Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung

Abstract:

Vision based user interfaces to control TVs and PCs have the advantage of being able to perform natural control without being limited to a specific device. Accordingly, various studies on hand gesture recognition using RGB cameras or depth cameras have been conducted. However, such cameras have the disadvantage of lacking in accuracy or the construction cost being large. The proposed method uses a low cost IR camera to accurately differentiate between the hand and the background. Also, complicated learning and template matching methodologies are not used, and the correlation between the fingertips extracted through curvatures is utilized to recognize Click and Move gestures.

Keywords: recognition, hand gestures, infrared camera, RGB cameras

Procedia PDF Downloads 407
3929 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector

Procedia PDF Downloads 375
3928 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 346
3927 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 164
3926 Recognition and Enforcement of International Commercial Arbitral Awards in Sri Lanka, A Lesson from Singapore

Authors: Kahandawala Arachchige Thani Chathurika Kahandawala

Abstract:

This research is attempted to analyse, Sri Lanka’s current situation regarding the recognition and enforcement of international commercial arbitration awards. Sri Lanka has been involved with commercial arbitration for a long time period. But there are good and bad legal practices in place in proceedings in Sri Lanka legal system. The common perception and reality of Sri Lanka’s arbitration law and practices regarding recognition and enforcement of international arbitral awards is far behind the international standards. Therefore arbitration as a dispute resolution method has become a time-consuming and costly method in Sri Lanka. This research is employed with the qualitative method based on both primary and secondary resources. This carried out the comparative analysis of recognition and enforcement in international arbitration laws established jurisdiction in Singapore and the United Kingdom, which are known as best counties as a seat of arbitration in Asia and Europe. International conventions, act and all the legal proceedings regarding recognition and enforcement of an international arbitral award in Sri Lanka are going to be discussed in the research. In the Jurisdiction of Sri Lanka, critically need to value an international arbitral award in the domestic legal system. Therefore an award has to be recognised in Sri Lanka. Otherwise, it doesn’t have any value. After recognizing it, court can enforce it. This research intends to provide a comparative analysis to overcome the drawbacks.

Keywords: arbitration, alternative dispute method, recognition and enforcement, foreign arbitral awards, Sri Lankan legal system, arbitral award in Singapore

Procedia PDF Downloads 171
3925 The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace

Authors: Nawaporn Srisarankullawong

Abstract:

This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration.

Keywords: patterns design, Suan Sunandha Palace, pattern of the flowers, visual arts and design

Procedia PDF Downloads 374
3924 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 272
3923 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 484
3922 Irregular Meal Pattern: What Is the Impact on Weight

Authors: Maha Alhussain, Moira A Taylor, Ian A. Macdonald

Abstract:

Background: It is well established that dietary composition has effects on metabolism and therefore impacts on health; however other aspects of diet, such as meal pattern, could also be important in both obesity management and promoting health. The present study investigated the effect of irregular meal frequency on anthropometric measurements and energy expenditure (EE) in healthy women. Design: 11 healthy weight women (18–40 years) were studied in a randomized crossover trial with two phases of 2 weeks each. In Phase 1, participants consumed either a regular meal pattern (6 meals/day) or an irregular meal pattern (varying from 3 to 9 meals/day). In Phase 2, participants followed the alternative meal pattern to that followed in Phase 1, after a 2-weeks washout period. In the two phases, identical foods were provided to a participant in amounts designed to keep body weight constant. Participants came to the laboratory after an overnight fast at the start and end of each phase. EE was measured in fasting state by indirect calorimetry. Postprandial EE was measured during the 3 h period after consumption of a milkshake, test drink. Results: There were no significant changes in body weight and anthropometric measurements after both meal pattern interventions. There was also no significant difference in mean daily energy intake between the regular and irregular meal pattern (2043 ±31 and 2099 ±33 respectively). EE in the fasting state showed no significant differences cross the experiment visits. There was a significant difference in Postprandial EE (measured for 3 h) by visit (P=0.04). Postprandial EE after the regular meal pattern was significantly higher than at baseline (P=0.002) or than after the irregular meal pattern (P= 0.04). Conclusion: Eating regularly for 14-day period significantly increases Postprandial EE which may contribute to weight loss and obesity management.

Keywords: energy expenditure, energy intake, meal pattern, weight loss

Procedia PDF Downloads 413
3921 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.

Keywords: colour recognition pen, colour spectrum, dental laboratory, denture

Procedia PDF Downloads 198
3920 Quality Assurance in Software Design Patterns

Authors: Rabbia Tariq, Hannan Sajjad, Mehreen Sirshar

Abstract:

Design patterns are widely used to make the process of development easier as they greatly help the developers to develop the software. Different design patterns have been introduced till now but the behavior of same design pattern may differ in different domains that can lead to the wrong selection of the design pattern. The paper aims to discover the design patterns that suits best with respect to their domain thereby helping the developers to choose an effective design pattern. It presents the comprehensive analysis of design patterns based on different methodologies that include simulation, case study and comparison of various algorithms. Due to the difference of the domain the methodology used in one domain may be inapplicable to the other domain. The paper draws a conclusion based on strength and limitation of each design pattern in their respective domain.

Keywords: design patterns, evaluation, quality assurance, software domains

Procedia PDF Downloads 522
3919 Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal

Authors: M. Javadzadeh, H. Khoshsima

Abstract:

In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm.

Keywords: liquid crystal, lens, Fresnel zone, diffraction, Fresnel lens

Procedia PDF Downloads 205
3918 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor

Authors: Jadisha Cornejo, Helio Pedrini

Abstract:

Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.

Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks

Procedia PDF Downloads 183
3917 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 369
3916 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 146