Search results for: 3D object reconstruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1776

Search results for: 3D object reconstruction

1596 Variation In Gastrocnemius and Hamstring Muscle Activity During Peak Knee Flexor Torque After Anterior Cruciate Ligament Reconstruction with Hamstring Graft

Authors: Luna Sequier, Florian Forelli, Maude Traulle, Amaury Vandebrouck, Pascal Duffiet, Louis Ratte, Jean Mazeas

Abstract:

The study's objective is to compare the muscular activity of the flexor knee muscle in patients who underwent an anterior cruciate ligament reconstruction with hamstring autograft and the individuals who have not undergone surgery. Methods: The participants were divided into two groups: a healthy group and an experimental group who had undergone an anterior cruciate ligament reconstruction with a hamstring graft. All participants had to perform a knee flexion strength test on an isokinetic dynamometer. The medial Gastrocnemius, lateral Gastrocnemius, Biceps femoris, and medial Hamstring muscle activity were measured during this test. Each group’s mean muscle activity was tested with statistical analysis, and a muscle activity ratio of gastrocnemius and hamstring muscles was calculated Results: The results showed a significant difference in activity of the medial gastrocnemius (p = 0,004901), the biceps femoris (p = 5,394.10-6), and the semitendinosus muscles (p = 1,822.10-6), with a higher Biceps femoris and Semitendinosus activity for the experimental group. It is however noticeable that inter-subject differences were important. Conclusion: This study has shown a difference in the gastrocnemius and hamstring muscle activity between patients who underwent an anterior cruciate ligament reconstruction surgery and healthy participants. With further results, this could show a modification of muscle activity patterns after surgery which could lead to compensatory behaviors at a return to sport and eventually explain a higher injury risk for our patients.

Keywords: anterior cruciate ligament, electromyography, muscle activity, physiotherapy

Procedia PDF Downloads 230
1595 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 180
1594 Applications for Accounting of Inherited Object-Oriented Class Members

Authors: Jehad Al Dallal

Abstract:

A class in an Object-Oriented (OO) system is the basic unit of design, and it encapsulates a set of attributes and methods. In OO systems, instead of redefining the attributes and methods that are included in other classes, a class can inherit these attributes and methods and only implement its unique attributes and methods, which results in reducing code redundancy and improving code testability and maintainability. Such mechanism is called Class Inheritance. However, some software engineering applications may require accounting for all the inherited class members (i.e., attributes and methods). This paper explains how to account for inherited class members and discusses the software engineering applications that require such consideration.

Keywords: class flattening, external quality attribute, inheritance, internal quality attribute, object-oriented design

Procedia PDF Downloads 257
1593 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 105
1592 Absent Theaters: A Virtual Reconstruction from Memories

Authors: P. Castillo Muñoz, A. Lara Ramírez

Abstract:

Absent Theaters is a project that virtually reconstructs three theaters that existed in the twentieth century, demolished in the city of Medellin, Colombia: Circo España, Bolívar, and Junín. Virtual reconstruction is used as an excuse to talk with those who lived in their childhood and youth cultural spaces that formed a whole generation. Around 100 people who witnessed these theaters were interviewed. The means used to perform the oral history work was the virtual reconstruction of the interior of the theaters that were presented to the interviewees through the Virtual Reality glasses. The voices of people between 60 and 103 years old were used to generate a transmission of knowledge to the new generations about the importance of theaters as essential places for the city, as spaces generating social relations and knowledge of other cultures. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places, with the purpose of compiling a collective discourse around cultural activities, heritage, and memory of Medellin.

Keywords: culture, heritage, oral history, theaters, virtual reality

Procedia PDF Downloads 119
1591 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 82
1590 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 79
1589 Phonological and Syntactic Evidence from Arabic in Favor of Biolinguistics

Authors: Marwan Jarrah

Abstract:

This research paper provides two pieces of phonological and syntactic evidence from Arabic for biolinguistics perspective of language processing. The first piece of evidence concerns the instances where a singular noun is converted to a plural noun in Arabic. Based on the findings of several research papers, this study shows that a singular word does not lose any of its moras when it is pluralized either regularly or irregularly. This mora conservation principle complies with the general physical law of the conservation of mass which states that mass is neither created nor destroyed but changed from one form into another. The second piece of evidence concerns the observation that when the object in some Arabic dialects including Jordanian Arabic and Najdi Arabic is a topic and positioned in situ (i.e. after the verb), the verb agrees with it, something that generates an agreeing inflection marker of the verb that agrees in Number, Person, and Gender with the in-situ topicalized object. This interaction between the verb and the object in such cases is invoked because of the extra feature the object bears, i.e. TOPIC feature. We suggest that such an interaction complies with the general natural law that elements become active when they, e.g., get an additional electron, when the mass number is not equal to the atomic number.

Keywords: biolinguistics, Arabic, physics, interaction

Procedia PDF Downloads 220
1588 An Investigation of How Pre-Service Physics Teachers Perceived the Results of Buoyancy Force

Authors: Ersin Bozkurt, Şükran Erdoğan

Abstract:

The purpose of the study is to explore how pre-service teachers perceive buoyancy force effecting an object in a liquid and identify their misconceptions. Pre-service teachers were interviewed to reveal their understandings of an object's floating, suspending and sinking in a liquid. In addition, they were asked about how an object -given its features- moved when it is provided with an external force and when it is released. The so-called circumstances were questioned in a different planet contexts. For this aim, focused group interview method was used. Six focused groups were formed and video recorded during the interval. Each focused group comprised of five pre-service teachers. It was found out pre-service teachers have common misunderstanding and misconceptions. In order to eliminate this conceptual misunderstandings, conceptual change texts were developed and further suggestions were made.

Keywords: computer simulations, conceptual change texts, physics education, students’ misconceptions in physics

Procedia PDF Downloads 459
1587 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction

Authors: Somia Bouzid, Messaoud Ramdani

Abstract:

The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.

Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network

Procedia PDF Downloads 373
1586 Mapping of Arenga Pinnata Tree Using Remote Sensing

Authors: Zulkiflee Abd Latif, Sitinor Atikah Nordin, Alawi Sulaiman

Abstract:

Different tree species possess different and various benefits. Arenga Pinnata tree species own several potential uses that is valuable for the economy and the country. Mapping vegetation using remote sensing technique involves various process, techniques and consideration. Using satellite imagery, this method enables the access of inaccessible area and with the availability of near infra-red band; it is useful in vegetation analysis, especially in identifying tree species. Pixel-based and object-based classification technique is used as a method in this study. Pixel-based classification technique used in this study divided into unsupervised and supervised classification. Object based classification technique becomes more popular another alternative method in classification process. Using spectral, texture, color and other information, to classify the target make object-based classification is a promising technique for classification. Classification of Arenga Pinnata trees is overlaid with elevation, slope and aspect, soil and river data and several other data to give information regarding the tree character and living environment. This paper will present the utilization of remote sensing technique in order to map Arenga Pinnata tree species

Keywords: Arenga Pinnata, pixel-based classification, object-based classification, remote sensing

Procedia PDF Downloads 359
1585 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 581
1584 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 70
1583 The Concept of Art: A Redefinition or Reconstruction

Authors: Patricia Agboro

Abstract:

The definition of a concept is quite important in any philosophical discourse as it serves as a guide in the analysis of that concept. In the sciences, arriving at a consensus regarding concepts is quite easily achievable due to the nature of the discipline. Problem arises when one delves into the realm of the humanities. Discourses in the humanities are largely perspectival because the question of values come into play. Defining the concept of Art is no different as it has yielded unresolved and problematic issues arising from attempts at definition. A major problem arising from such attempt is that of exclusion of other art forms. In this paper therefore, we call for the rejection of an attempt at providing a comprehensive definition for Art since it is clear that the collection of definitions provided so far, has failed in capturing the nuances and intricacies of the infinite varieties of the art forms that there are. Rather, a more fruitful approach to philosophical discourses on Art is not to construe the theories of Art per-se but to reconstruct them as a collection of criteria for determining artistic excellence.

Keywords: art, creativity, definition, reconstruction

Procedia PDF Downloads 163
1582 The Effect of Object Presentation on Action Memory in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf

Abstract:

Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.

Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children

Procedia PDF Downloads 228
1581 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 234
1580 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 65
1579 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm

Authors: Mengjun Yang, Zhulin Zong, Jie Gao

Abstract:

In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.

Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift

Procedia PDF Downloads 254
1578 Reconstruction of Wujiaochang Plaza: A Potential Avenue Towards Sustainability

Authors: Caiwei Chen, Jianhao Li, Jiasong Zhu

Abstract:

The reform and opening-up stimulated economic and technological take-off in China while resulting in massive urbanization and motorization. Wujiaochang area was set as a secondary business district in Shanghai to meet the growing demand, with the reconstruction of Wujiaochang Plaza in 2005 being a milestone of this intended urban renewal. Wujiaochang is now an economically dynamic area providing much larger traffic and transit capacity transportation-wise. However, this rebuilding has completely changed the face of the district. It is, therefore, appropriate to evaluate its impact on neighborhoods and communities while assessing the overall sustainability of such an operation. In this study, via an online questionnaire survey among local residents and daily visitors, we assess the perceptions and the estimated impact of Wujiaochang Plaza's reconstruction. We then confront these results to the 62 answers from local residents to a questionnaire collected on paper. The analysis of our data, along with observation and other forms of information -such as maps analysis or online applications (Dianping)- demonstrate major improvement in economic sustainability but also significant losses in environmental sustainability, especially in terms of active transportation. As for the social viewpoint, local residents' opinions tend to be rather positive, especially regarding traffic safety and access to consumption, despite the lack of connectivity and radical changes induced by Wujiaochang massive transformations. In general, our investigation exposes the overall positive outcomes of Wujiaochang Plaza reconstruction but also unveils major drawbacks, especially in terms of soft mobility and traffic fluidity. We gather that our approach could be of tremendous help for future major urban interventions, as such approaches in municipal regeneration are widely implemented in Chinese cities and yet still need to be thoroughly assessed in terms of sustainability.

Keywords: China's reform and opening-up, economical revitalization, neighborhood identity, sustainability assessment, urban renewal

Procedia PDF Downloads 220
1577 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques

Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri

Abstract:

Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.

Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology

Procedia PDF Downloads 136
1576 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: fuzzy object, fuzzy image segmentation, motion descriptors, MRI imaging, object-based image retrieval

Procedia PDF Downloads 363
1575 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China

Authors: Huicong Jia, Donghua Pan

Abstract:

As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.

Keywords: China, disaster system, emergency relief, tornado catastrophe

Procedia PDF Downloads 255
1574 The Application of Patterned Injuries in Reconstruction of Motorcycle Accidents

Authors: Chun-Liang Wu, Kai-Ping Shaw, Cheng-Ping Yu, Wu-Chien Chien, Hsiao-Ting Chen, Shao-Huang Wu

Abstract:

Objective: This study analyzed three criminal judicial cases. We applied the patterned injuries of the rider to demonstrate the facts of each accident, reconstruct the scenes, and pursue the truth. Methods: Case analysis, a method that collects evidence and reasons the results in judicial procedures, then the importance of the pattern of injury as evidence will be compared and evaluated. The patterned injuries analysis method is to compare the collision situation between an object and human body injuries to determine whether the characteristics can reproduce the unique pattern of injury. Result: Case 1: Two motorcycles, A and B, head-on collided; rider A dead, and rider B was accused. During the prosecutor’s investigation, the defendant learned that rider A had an 80 mm open wound on his neck. During the court trial, the defendant requested copies of the case file and found out that rider A had a large contusion on his chest wall, and the cause of death was traumatic hemothorax and abdominal wall contusion. The defendant compared all the evidence at the scene and determined that the injury was obviously not caused by the collision of the body or the motorcycle of rider B but that rider was out of control and injured himself when he crossed the double yellow line. In this case, the defendant was innocent in the High Court judgment in April 2022. Case 2: Motorcycles C and D head-on crashed, and rider C died of massive abdominal bleeding. The prosecutor decided that rider C was driving under the influence (DUI), but rider D was negligent and sued rider D. The defendant requested the copies’ file and found the special phenomenon that the front wheel of motorcycle C was turned left. The defendant’s injuries were a left facial bone fracture, a left femur fracture, and other injuries on the left side. The injuries were of human-vehicle separation and human-vehicle collision, which proved that rider C suddenly turned left when the two motorcycles approached, knocked down motorcycle D, and the defendant flew forward. Case 3: Motorcycle E and F’s rear end collided, the front rider E was sentenced to 3 months, and the rear rider F sued rider E for more than 7 million N.T. The defendant found in the copies’ file that the injury of rider F was the left tibial platform fracture, etc., and then proved that rider F made the collision with his left knee, causing motorcycle E to fall out of control. This evidence was accepted by the court and is still on trial. Conclusion: The application of patterned injuries in the reconstruction of a motorcycle accident could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the policy of preventing traffic accident casualties.

Keywords: judicial evidence, patterned injuries analysis, accident reconstruction, fatal motorcycle injuries

Procedia PDF Downloads 68
1573 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 380
1572 Service Users’ Opinions and Experiences of Health Care Practitioners’ Right to Conscientiously Object to Abortion: A Liberal Feminist Approach

Authors: B. Self, V. Fleming, C. Maxwell

Abstract:

The fourth clause of the UK 1967 Abortion Act allows individuals (including health care practitioners) to conscientiously object to participating in an abortion. Individuals are able to object if they consider that participating is incompatible with their religious, moral, philosophical, ethical, or personal beliefs. Currently, there is no research on service users’ opinions and understandings of conscientious objection or the impact of conscientious objection from the UK service users’ perspective. This perspective is imperative in understanding the real-world consequences and impact of conscientious objection and essential when creating policy and guidelines. This qualitative research took a liberal feminist approach. It provided a platform for service users to share their experiences of abortion and conscientious objection, as well as their opinions and understandings of conscientious objection. The method employed was semi-structured interviews. Findings indicated that conscientious objection could work in practice. However, it is currently failing some individuals, as health care practitioners are not always referring and informing service users. Participants didn’t experience burdens such as long waiting times and were still able to access legal abortion. However, participants did experience negative emotional effects, as they were often left feeling scared, angry, and hopeless when they were not referred. Moreover, participants’ opinions on conscientious objection in the UK varied greatly. The majority supported the most common approach within the literature and in practice, whereby health care practitioners are able to object so long as they refer and inform the service user. However, the opinion that health care practitioners should not be allowed to object or should be able to object without referring and informing was also present. Without this research, the impact that conscientious objection is having on service users in the UK and service users’ opinions on conscientious objection wouldn’t be known. These findings will be used to inform national policy and guidelines, making access to abortion fairer and safer for all.

Keywords: conscientious objection, abortion, medical ethics, reproductive justice

Procedia PDF Downloads 132
1571 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration

Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault

Abstract:

Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.

Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability

Procedia PDF Downloads 399
1570 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 381
1569 Arthroscopic Assisted Fibertape Technique For Recurrent MPFL Reconstruction - Case Series Done In The UK Population

Authors: Naufal Ahmed, Michael Lwin

Abstract:

Background: MPFL reconstructions are ideally performed with au-tografts like gracilis semitendinosus tendon, which may be associated with donor site morbidity and complications. In this case series, we have tried to use fiber tape, which avoids the above complications and also keeps the graft virgin. This kind of synthetic graft has been used successfully in rotator cuffs and ACJ reconstructions with good results. Materials and methods: It was a retrospective data analysis of 45 patients who underwent this procedure from 2014-2020 under a single consultant in a DGH . These patiens have been followed up at 6 weeks, 6 months, 1 year, and 1 ½ years with clinical assessment and KOOS scores. We compared the results with the NJR and also with the Belgium report and was found to be satisfactory and comparable with them. Surgical technique : We used Arthrex fiber tape for the reconstruction of MPFL . Initially, two parallel holes drilled over sup aspect of the patella with help of an image intensifier, and then fiber wire passed through them from the medial to the lateral side and back to the medial side. The fiber wire was attached to the schottle point on the femoral side, giving a good extra articular internal brac-ing to the MPFL. All patients were scoped before the procedure, and the final tightening over the femoral side was done directly under vision to see the position of the patella. Results: We had 45 MPFL reconstructions along with 4 additional procedures 1 ACLR, 2 ACL REPAIR, 1 TTT advancement ( revision MPFL ). There were 14 males and 31 females, and their average age was 25 (13-55 ). We did not have any donor site morbidity, no infection, no fractures, no recurrent dislocations, no reoperations yet. Conclusion: Fiber tape is a feasible and appropriate option for MPFL reconstruction. We haven’t seen any re -operation in our 5 year follow up. This technique avoids the use of autograft, which can be used in the future if needed for revision surgeries. We don’t lose anything by following this simple novel technique.

Keywords: arthroscopy, fibertape, MPFL reconstruction, recurrent patella dislocation

Procedia PDF Downloads 131
1568 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 64
1567 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 372