Search results for: split tensile strength
2432 Silk Fibroin-PVP-Nanoparticles-Based Barrier Membranes for Tissue Regeneration
Authors: Ivone R. Oliveira, Isabela S. Gonçalves, Tiago M. B. Campos, Leandro J. Raniero, Luana M. R. Vasconcellos, João H. Lopes
Abstract:
Originally, the principles of guided tissue/bone regeneration (GTR/GBR) were followed to restore the architecture and functionality of the periodontal system. In essence, a biocompatible polymer-based occlusive membrane is used as a barrier to prevent migration of epithelial and connective tissue to the regenerating site. In this way, progenitor cells located in the remaining periodontal ligament can recolonize the root area and differentiate into new periodontal tissues, alveolar bone, and new connective attachment. The use of synthetic or collagen-derived membranes with or without calcium phosphate-based bone graft materials has been the treatment used. Ideally, these membranes need to exhibit sufficient initial mechanical strength to allow handling and implantation, withstand the various mechanical stresses suffered during surgery while maintaining their integrity, and support the process of bone tissue regeneration and repair by resisting cellular traction forces and wound contraction forces during tissue healing in vivo. Although different RTG/ROG products are available on the market, they have serious deficiencies in terms of mechanical strength. Aiming to improve the mechanical strength and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the natural polymer (silk fibroin - FS) and the synthetic polymer poly(vinyl pyrrolidone - PVP) with graphene nanoplates (NPG) and gold nanoparticles (AuNPs), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of high voltage spinning and/or solution blowing and with a high production rate, enabling development on an industrial scale. Silk fibroin uniquely solved many of the problems presented by collagen and was used in this work because it has unique combined merits, such as programmable biodegradability, biocompatibility and sustainable large-scale production. Graphene has attracted considerable attention in recent years as a potential biomaterial for mechanical reinforcement because of its unique physicochemical properties and was added to improve the mechanical properties of the membranes associated or not with the presence of AuNPs, which have shown great potential in regulating osteoblast activity. The preparation of FS from silkworm cocoons involved cleaning, degumming, dissolution in lithium bromide, dialysis, lyophilization and dissolution in hexafluoroisopropanol (HFIP) to prepare the solution for electrospinning, and crosslinking tests were performed in methanol. The NPGs were characterized and underwent treatment in nitric acid for functionalization to improve the adhesion of the nanoplates to the PVP fibers. PVP-NPG membranes were produced with 0.5, 1.0 and 1.5 wt% functionalized or not and evaluated by SEM/FEG, FTIR, mechanical strength and cell culture assays. Functionalized GNP particles showed stronger binding, remaining adhered to the fibers. Increasing the graphene content resulted in higher mechanical strength of the membrane and greater biocompatibility. The production of FS-PVP-NPG-AuNPs hybrid membranes was performed by electrospinning in separate syringes and simultaneously the FS solution and the solution containing PVP-NPG 1.5 wt% in the presence or absence of AuNPs. After cross-linking, they were characterized by SEM/FEG, FTIR and behavior in cell culture. The presence of NPG-AuNPs increased the viability and the presence of mineralization nodules.Keywords: barrier membranes, silk fibroin, nanoparticles, tissue regeneration.
Procedia PDF Downloads 122431 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate
Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung
Abstract:
The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate
Procedia PDF Downloads 5202430 Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process
Authors: M. A. Alhubail, A. I. Alateyah, D. Alenezi, B. Aldousiri
Abstract:
In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated.Keywords: optimum parameters, injection moulding, conformal cooling channels, cycle time
Procedia PDF Downloads 2282429 Durability of Functionally Graded Concrete
Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav
Abstract:
Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test
Procedia PDF Downloads 182428 Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects
Authors: Mohammad Amin Tutunchian, Pedram Roshani, Reza Rezvani, Julio Ángel Infante Sedano
Abstract:
The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques.Keywords: unsaturated soils, shear strength, LRFD, FOSM, GRF
Procedia PDF Downloads 882427 Development of an Auxetic Tissue Implant
Authors: Sukhwinder K. Bhullar, M. B. G. Jun
Abstract:
The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues
Procedia PDF Downloads 4592426 The Effect of Adding Microsilica on the Rheological Behavior and Injectability of the Paste in the Injection Molding of Silica-Based Ceramic Cores
Authors: Arghavan Kazemi, Hossein Radipour
Abstract:
Microsilica (silica foam) is a byproduct of ferrosilicon production and silicon metal. Microsilica particles have a spherical shape, an average diameter of 0.15 µm, and a specific surface area of 15-25 m². g-¹. The overall density of this material is 150-700 kg.m-³. Many researchers have investigated the effect of adding microsilica on the flow properties of cement mixtures. This paper investigated the effect of adding microsilica on the flow behavior and injectability of silica-based paste. For this purpose, different percentages of microsilica have been used to prepare the paste. The rheometric test was performed on all the samples with different percentages of microsilica additives using an MCR300 rotary viscometer at a temperature of 70°C. In addition, the ability to inject pastes containing different amounts of microsilica at pressures of 25, 40, 50, and (bar) 60 at constant temperature and flow in a mold with dimensions of 80 × 80 × 0.5 mm³ has been investigated. Then, the effect of microsilica addition on the strength, porosity percentage, and leachability of the sintered core was studied. The results show that the rheological behavior of the paste is pseudoplastic; also, the silane index decreases with the increase in the percentage of microsilica addition, and the viscosity increases. On the other hand, the addition of microsilica has led to the appearance of thixotropic in the paste. By increasing the amount of microsilica, the injectability has significantly improved at low pressures. The strength of the sintered core increases with the increase of microsilica and the amount of remaining porosity and leachability decreases.Keywords: microsilica, rheological behavior, injectability, injection molding, silica-based ceramic cores, leachability
Procedia PDF Downloads 332425 Adhesive Based upon Polyvinyl Alcohol And Chemical Modified Oca (Oxalis tuberosa) Starch
Authors: Samantha Borja, Vladimir Valle, Pamela Molina
Abstract:
The development of adhesives from renewable raw materials attracts the attention of the scientific community, due to it promises the reduction of the dependence with materials derived from oil. This work proposes the use of modified 'oca (Oxalis tuberosa)' starch and polyvinyl alcohol (PVA) in the elaboration of adhesives for lignocellulosic substrates. The investigation focused on the formulation of adhesives with 3 different PVA:starch (modified and native) ratios (of 1,0:0,33; 1,0:1,0; 1,0:1,67). The first step to perform it was the chemical modification of starch through acid hydrolysis and a subsequent urea treatment to get carbamate starch. Then, the adhesive obtained was characterized in terms of instantaneous viscosity, Fourier-transform infrared spectroscopy (FTIR) and shear strength. The results showed that viscosity and mechanical tests exhibit data with the same tendency in relation to the native and modified starch concentration. It was observed that the data started to reduce its values to a certain concentration, where the values began to grow. On the other hand, two relevant bands were found in the FTIR spectrogram. The first in 3300 cm⁻¹ of OH group with the same intensity for all the essays and the other one in 2900 cm⁻¹, belonging to the group of alkanes with a different intensity for each adhesive. On the whole, the ratio PVA:starch (1:1) will not favor crosslinking in the adhesive structure and causes the viscosity reduction, whereas, in the others ones, the viscosity is higher. It was also observed that adhesives made with modified starch had better characteristics, but the adhesives with high concentrations of native starch could equal the properties of the adhesives made with low concentrations of modified starch.Keywords: polyvinyl alcohol, PVA, chemical modification, starch, FTIR, viscosity, shear strength
Procedia PDF Downloads 1542424 Recycling of Sewage Sludge Ash (SSA) as Construction Material
Authors: Z. Chen, C. S. Poon
Abstract:
In Hong Kong, about 1,000 tonnes of sewage sludge were produced every day in 2014 representing a major fraction of the total solid municipal waste. Traditionally, sewage sludge is disposed of at landfills. This disposal method causes environmental issues and uses up precious space in landfills which are becoming saturated one by one. To tackle the disposal problem, Hong Kong government has just built a sewage sludge incinerator. Through incineration the volume of waste can be reduced up to 90% by converting sewage sludge into ash. Whilst sewage sludge ash (SSA) still needs to be disposed of at landfills, research has been conducted at the Hong Kong Polytechnic University on using SSA to substitute cement for the production of construction materials. Results demonstrated that SSA contained many open and isolated pores and thus can reduce the cement dilution effect resulting in only slight decrease in the flexural and compressive strengths of cement mortar. The incorporation of SSA in cement mortar can be up to 20% of the binder, without too much worry about adverse effect on strength development of mortar. There was some enhancement in strength using ground SSA in comparison to the original SSA. The original SSA shortened the relative initial setting time of cement paste but ground SSA caused slight delay in the setting of cement paste. The research also found that increasing the percentage of SSA lead to decreasing workability of cement mortar with the same water/binder ratio, and ground SSA was beneficial to workability although grinding increased the surface area of SSA. This paper summarizes the major findings of the research.Keywords: cement replacement, construction material, sewage sludge ash, waste recycling
Procedia PDF Downloads 3912423 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener
Authors: Wenhao Li, Shijun Guo
Abstract:
Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring
Procedia PDF Downloads 1632422 Converting Scheduling Time into Calendar Date Considering Non-Interruptible Construction Tasks
Authors: Salman Ali Nisar, Suzuki Koji
Abstract:
In this paper we developed a new algorithm to convert the project scheduling time into calendar date in order to handle non-interruptible activities not to be split by non-working days (such as weekend and holidays). In a construction project some activities might require not to be interrupted even on non-working days, or to be finished on the end day of business days. For example, concrete placing work might be required to be completed by the end day of weekdays i.e. Friday, and curing in the weekend. This research provides an algorithm that imposes time constraint for start and finish times of non-interruptible activities. The algorithm converts working days, which is obtained by Critical Path Method (CPM), to calendar date with consideration of the start date of a project. After determining the interruption by non-working days, the start time of a certain activity should be postponed, if there is enough total float value. Otherwise, the duration is shortened by hiring additional resources capacity or/and using overtime work execution. Then, time constraints are imposed to start time and finish time of the activity. The algorithm is developed in Excel Spreadsheet for microcomputer and therefore we can easily get a feasible, calendared construction schedule for such a construction project with some non-interruptible activities.Keywords: project management, scheduling, critical path method, time constraint, non-interruptible tasks
Procedia PDF Downloads 5022421 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations
Authors: Sam S. Hashemi
Abstract:
The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.Keywords: borehole stability, experimental studies, poorly cemented sands, total absorbed strain energy
Procedia PDF Downloads 2092420 Seismic Analysis of URM Buildings in South Africa
Authors: Trevor N. Haas, Thomas van der Kolf
Abstract:
South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.Keywords: URM, seismic analysis, FEM, Cape Town
Procedia PDF Downloads 3672419 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls
Authors: Ibrahim Aydogdu, Alper Akin
Abstract:
In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.Keywords: bio geography, meta-heuristic search, optimization, retaining wall
Procedia PDF Downloads 4002418 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites
Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad
Abstract:
The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure
Procedia PDF Downloads 3382417 CRLH and SRR Based Microwave Filter Design Useful for Communication Applications
Authors: Subal Kar, Amitesh Kumar, A. Majumder, S. K. Ghosh, S. Saha, S. S. Sikdar, T. K. Saha
Abstract:
CRLH (composite right/left-handed) based and SRR (split-ring resonator) based filters have been designed at microwave frequency which can provide better performance compared to conventional edge-coupled band-pass filter designed around the same frequency, 2.45 GHz. Both CRLH and SRR are unit cells used in metamaterial design. The primary aim of designing filters with such structures is to realize size reduction and also to realize novel filter performance. The CRLH based filter has been designed in microstrip transmission line, while the SRR based filter is designed with SRR loading in waveguide. The CRLH based filter designed at 2.45 GHz provides an insertion loss of 1.6 dB with harmonic suppression up to 10 GHz with 67 % size reduction when compared with a conventional edge-coupled band-pass filter designed around the same frequency. One dimensional (1-D) SRR matrix loaded in a waveguide shows the possibility of realizing a stop-band with sharp skirts in the pass-band while a stop-band in the pass-band of normal rectangular waveguide with tailoring of the dimensions of SRR unit cells. Such filters are expected to be very useful for communication systems at microwave frequency.Keywords: BPF, CRLH, harmonic, metamaterial, SRR and waveguide
Procedia PDF Downloads 4272416 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams
Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare
Abstract:
In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility
Procedia PDF Downloads 692415 A Study on the Role of Human Rights in the Aid Allocations of China and the United States
Authors: Shazmeen Maroof
Abstract:
The study is motivated by a desire to investigate whether there is substance to claims that, relative to traditional donors, China disregards human rights considerations when allocating overseas aid. While the stated policy of the U.S. is that consideration of potential aid recipients’ respect for human rights is mandatory, some quantitative studies have cast doubt on whether this is reflected in actual allocations. There is a lack of academic literature that formally assesses the extent to which the two countries' aid allocations differ; which is essential to test whether the criticisms of China's aid policy in comparison to that of the U.S. are justified. Using data on two standard human rights measures, 'Political Terror Scale' and 'Civil Liberties', the study analyse the two donors’ aid allocations among 125 countries over the period 2000 to 2014. The bivariate analysis demonstrated that a significant share of China’s aid flow to countries with poor human rights record. At the same time, the U.S. seems little different in providing aid to these countries. The empirical results obtained from the Fractional Logit model also provided some support to the general pessimism regarding China’s provision of aid to countries with poor human rights record, yet challenge the optimists expecting better targeted aid from the U.S. These findings are consistent with the split between humanitarian and non-humanitarian aid and in the sample of countries whose human rights record is below some threshold level.Keywords: China's aid policy, foreign aid allocation, human rights, United States Foreign Assistance Act
Procedia PDF Downloads 1092414 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model
Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi
Abstract:
Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness
Procedia PDF Downloads 2722413 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition
Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang
Abstract:
Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model
Procedia PDF Downloads 1092412 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization
Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties
Procedia PDF Downloads 1282411 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀
Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz
Abstract:
Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.Keywords: metallic glass, magnesium, melt spinning, amorphous alloys
Procedia PDF Downloads 2362410 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF
Authors: Sezen Gurdag, Ayse Ebru Akin
Abstract:
There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive
Procedia PDF Downloads 1592409 Effect of Using Crumb Rubber with Warm-Mix-Asphalt Additive in Laboratory and Field Aging
Authors: Mustafa Akpolat, Baha Vural Kök
Abstract:
Using a waste material such as crumb rubber (CR) obtained by waste tires has become an important issue in respect to sustainability. However, the CR modified mixture also requires high manufacture temperature as a polymer modified mixture. For this reason in this study, it is intended to produce a CR modified mixture with warm mix asphalt additives in the same mixture. Asphalt mixtures produced by pure, 10%CR, 10%CR+3% Sasobit and 10%CR+0.7% Evotherm were subjected to aging procedure in the laboratory and the field. The indirect tensile repeated tests were applied to aged and original specimens. It was concluded that the fatigue life of the mixtures increased significantly with the increase of aging time. CR+Sasobit modified mixture aged at the both field and laboratory gave the highest load cycle among the mixtures.Keywords: crumb rubber, warm mix asphalt, aging, fatigue
Procedia PDF Downloads 4022408 Posttraumatic Distress, Hope and Growth in Survivors of Commercial Sexual Exploitation and Sex Trafficking in Nepal
Authors: Rebekah Volgin, Jane Shakespeare-Finch, Ian Shochet
Abstract:
Commercial sexual exploitation (CSE) and sex trafficking affect between 5000-7000 girls and women in Nepal each year and can have devastating physical and psychological consequences. Much research has documented these effects, however, there is no published longitudinal research that focuses on whether healing and growth outcomes are possible for survivors of CSE and sex trafficking. The narratives of 27 girls and women (13-22 years) were taken at two-time points during participation in a six-week group psychoeducation and art therapy program which was delivered across three NGO’s in Kathmandu, Nepal. These narratives form part of a larger ethnographic project. Thematic analysis of the data was undertaken. Themes emerging from time point 1 were: psychological distress in the form of anxiety and grief over loss of family, psychosomatic symptoms, empathy and compassion, and posttraumatic growth (PTG) in the form of new possibilities, relating to others and personal strength. Posttraumatic growth refers to positive changes in the aftermath of trauma. The themes emerging from time point 2, were: empathy and compassion and PTG (cognitive restructuring, new possibilities, relating to others and personal strength). Alongside the distress that these participants experienced, they also experienced positive outcomes such as empathy and compassion and psychological growth. Future research would advance knowledge by further examining the process of PTG in this population, if the changes observed were lasting, and if so, ways in which PTG can be facilitated or promoted.Keywords: commercial sexual exploitation, human trafficking, posttraumatic growth, sexual trauma
Procedia PDF Downloads 2572407 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications
Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh
Abstract:
Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential
Procedia PDF Downloads 1402406 Phosphate Tailings in View of a Better Waste Disposal And/or Valorization: Case of Tunisian Phosphates Mines
Authors: Mouna Ettoumi, Jouini Marouen, Carmen Mihaela Neculita, Salah Bouhlel, Lucie Coudert, Mostafa Benzaazoua, Y. Taha
Abstract:
In the context of sustainable development and circular economy, waste valorization is considered a promising alternative to overcome issues related to their disposal or elimination. The aim of this study is to evaluate the potential use of phosphate sludges (tailings) from the Kef Shfeir mine site (Gafsa, Tunisia) as an alternative material in the production of fired bricks. To do so, representative samples of raw phosphate treatment sludges were collected and characterized for their physical, chemical, mineralogical and environmental characteristics. Then, the raw materials were baked at different temperatures (900°C, 1000°C, and 1100°C) for bricks making. Afterward, fired bricks were characterized for their physical (particle size distribution, density, and plasticity), chemical (XRF and digestion), mineralogical (XRD) and mechanical (flexural strength) properties as well as for their environmental behavior (TCLP, SPLP, and CTEU-9) to ensure whether they meet the required construction standards. Results showed that the raw materials had low density (2.47g/cm 3), were non-plastic and were mainly composed of fluoroapatite (15.6%), calcite (23.1%) and clays (22.2% - mainly as heulandite, vermiculite and palygorskite). With respect to the environmental behavior, all metals (e.g., Pb, Zn, As, Cr, Ba, Cd) complied with the requirements set by the USEPA. In addition, fired bricks had varying porosity (9-13%), firing shrinking (5.2-7.5%), water absorption (12.5-17.2%) and flexural strength (3.86-13.4 MPa). Noteworthy, an improvement in the properties (porosity, firing shrinking, water absorption, and flexural strength) of manufactured fired bricks was observed with the increase of firing temperature from 900 to 1100°C. All the measured properties complied with the construction norms and requirements. Moreover, regardless of the firing temperature, the environmental behavior of metals obeyed the requirements of the USEPA standards. Finally, fired bricks could be produced at high temperatures (1000°C) based on 100% of phosphate sludge without any substitution or addition of either chemical agents or binders. This sustainable brick-making process could be a promising approach for the Phosphate Company to partially manage these wastes, which are considered “non-profitable” for the moment and preserve soils that are exploited presently.Keywords: phosphate treatment sludge, mine waste, backed bricks, waste valorization
Procedia PDF Downloads 2062405 Modeling Anisotropic Damage Algorithms of Metallic Structures
Authors: Bahar Ayhan
Abstract:
The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.Keywords: anisotropic damage, finite element method, plasticity, coupling
Procedia PDF Downloads 2062404 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications
Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble
Abstract:
Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings
Procedia PDF Downloads 932403 Ultrasound Guided Treatment of Carpal Tunnel Syndrome
Authors: Kazem Shakouri, Alireza Pishgahi, Homayoun Sadeghi-bBazargani, Shahla Dareshiri
Abstract:
Introduction: Carpal Tunnel Syndrome has numerous nonsurgical treatments including splint, physical therapy and corticosteroid injections. Aim: The purpose of this study was to evaluate the effectiveness of an ultrasound guided treatment procedure, for individuals with severe carpal tunnel syndrome. Materials and Method: 20 patients with an electrodiagnostic evidence of severe carpal tunnel syndrome were treated by an office-based ultrasound guided procedure (combination of percutaneous needle release of carpal tunnel and corticosteroid injection). Electrodiagnostic (nerve conduction study), clinical (Boston Carpal Tunnel Questionnaire, grip strength) and ultrasonic (median nerve and carpal tunnel cross-sectional area) measurements were recorded at baseline and one month after intervention. Results: Our preliminary data analysis showed that in one month follow up, patients had a significantly smaller cross-sectional area of the median nerve compared to pretreatment values (mean difference 0.06; 95%CI: 0.02-0.1; p < 0.001). In addition, patients had significantly less functional impairment (mean difference 35; 95% CI:28.7-43.4 ; p < 0.001), and an improved hand grip strength in one month follow up (mean difference 5.4; 95%CI: 3.1-7.8; p < 0.001;). There were no significant complications. Conclusion: Patients with severe carpal tunnel syndrome, who are candidates for surgical intervention, can consider office-based ultrasound guided needle release of carpal tunnel as an alternative safe treatment.Keywords: Carpal Tunnel Syndrome, needle release, pain, ultrasound
Procedia PDF Downloads 247