Search results for: spatial metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3007

Search results for: spatial metrics

967 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam

Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares

Abstract:

Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.

Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy

Procedia PDF Downloads 263
966 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 366
965 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 65
964 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 169
963 Girls’ Education Policy and Practices in Three Selected Countries of Africa: Feminism, Educational Reform and Cultural Inflections in View

Authors: Endalew Fufa Kufi

Abstract:

One of the major concerns in educational provision and success determination is access to available opportunities. In that, girls’ access to education has been a point of concern, and more emphasis has come to be at the forefront regarding success. Researches have mostly been held on extremes such as equal access and success, but only a few works deal with process issues related to home and school interplay, issues of progress from lower to higher levels, and spatial conditions related to girls’ education. Hence, this survey assessed experiences in three countries of Africa: Ethiopia, Ghana, and Botswana regarding girls’ education in policy and practice as related to contextual matters in girls’ education. Contextual discourse analysis of qualitative design was used to materialize the study. From each country, five research works held 2010 onwards were purposively selected through criterion-sampling. On the policy aspect, workable documents were looked into. The findings denoted that educational access was of more stretch and generic nature, and the narration was dominated by institutional expectations, not identifying which group should benefit what. The researches largely dealt with either subject-specific dealings or access alone at large. Success studies, by far, dealt with a comparison of girls with boys rather than determinant-related projections. Moreover, the cultural representation of girls’ education had a very minimal part in both policy and researches. From that, it could be found that in-depth scrutiny on the individual, institutional, and leadership determinants of girls’ education would be necessary.

Keywords: determinants, girls, education, feminism

Procedia PDF Downloads 295
962 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 86
961 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 76
960 Assessing the Walkability and Urban Design Qualities of Campus Streets

Authors: Zhehao Zhang

Abstract:

Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.

Keywords: walkability, streetscapes, pedestrian activity, walk score

Procedia PDF Downloads 144
959 When Mobile Work Creates More Discrimination

Authors: Marie-Therese Claes, Anett Hermann

Abstract:

With the advent of the web and information technology since the end of the 20ᵗʰ century, digitalization has revolutionized our everyday life, from shopping and dating to education and transportation. The world of work is one of the areas that has been highly transformed by changing the time and spatial limits of the work. The expansion of the internet, wireless, and easily portable devices such as laptop computers and mobile phones has enabled us to work almost from any place at any time. As a result, telework, which started in the 1950s and elevated in the 1970s, steeply raised to a new level in 21ˢᵗ century. Telework consists of various forms of work done from outside the traditional workplace by using information technologies. The social distancing and lockdown measures that have been taken to reduce the spread of the virus in many countries worldwide resulted in an increasing number of teleworkers and made “working from home’’ synonymous with telework. Post-COVID-19, the number of teleworkers is still higher than before the pandemic period, and the interest in expanding teleworking has been growing too. Notwithstanding the advantages ushered by telework, it also has a number of drawbacks that negatively affect organizations and employees. The intention of this piece of work is not to indicate a causational relationship between telework and discrimination. Our aim is to indicate some unintended and/or unnoticed deleterious effects of telework in reinforcing discrimination and to instigate discussion on how to mitigate the effects. To do so, this insight indicates how telework reinforces traditional gender roles and how organizational culture towards telework and its access to employees at different levels of the organizational hierarchy opens the room for discrimination.

Keywords: mobile work, discrimination, gender roles, organizational culture

Procedia PDF Downloads 67
958 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 361
957 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 133
956 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
955 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 67
954 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
953 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type

Procedia PDF Downloads 290
952 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 189
951 Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa

Authors: Abdulrazaq Yahaya, Omobola Okoh, Anthony Okoh

Abstract:

Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities.

Keywords: organic pollutants, polychlorinated biphenyls, pollution, solvent extraction

Procedia PDF Downloads 316
950 An Application of Remote Sensing for Modeling Local Warming Trend

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 339
949 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 339
948 Influence of People and Places on the Identity of Ethnic Enclaves: A Visual Analysis of Little India, Penang

Authors: Excellent Hansda

Abstract:

Over the past years, a lot of research has been on the ethnic enclaves from historical, sociological and economic point of view. However there exist a research gap in the built environment and spatial layout of these areas. When immigrants (People) assimilate in a different place, they struggle to preserve their original identity to maintain their heritage. Then there is the Place, which is the physical manifestation of the heritage, shown through streetscape and architecture. Together 'People and Place' form a relationship with the authenticity of the enclave. As immigrants come in the host country, they try to bring their culture into the place, but at the same time, the culture of the host country also affects the immigrants. This creates conflicts not only in the lifestyle and culture of the immigrants, but also the built characteristics of the place. In the midst of such conflicts, one may easily question the authenticity of an ethnic enclave. In Malaysia, a number of ethnic enclaves emerged due to trade during the medieval times. Little India is one among the other ethnic enclaves present in Chulia Street in Malaysia. The study investigates the factors of 'Place and People', affecting the authenticity of a little India, in the context of an evolving state of Penang in Malaysia. The study is carried through extensive literature review of existing data, followed by observations drawn by visual analysis, discussions and interviews with the stakeholders of the study area. The findings of this research suggest the contribution of 'people and places' in the process of place making in an ethnic enclave. The findings are essential for conservation and further development of ethnic enclaves.

Keywords: conservation, ethnic enclaves, heritage, identity

Procedia PDF Downloads 156
947 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
946 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 428
945 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses

Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan

Abstract:

California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.

Keywords: soil moisture, high resolution, regional drought, analysis and monitoring

Procedia PDF Downloads 136
944 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine

Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali

Abstract:

Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.

Keywords: droplet collision, coalescence, low speed, diesel fuel

Procedia PDF Downloads 236
943 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.

Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇

Procedia PDF Downloads 135
942 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 109
941 New Forms of Living and Compatibility with the Three Ages of Life - Definition of Fundamental Design Characteristics for Intergenerational Mansions

Authors: Alessandra Marino

Abstract:

This paper thoroughly investigates the design characteristics necessary for intergenerational living and evaluates their applicability within the Italian social panorama in order to identify a model that can serve as a reference for subsequent regulatory adjustments of a new building typology. The applied methodology involves the collaboration of people with various background and architects, all representing the three main ages of life - childhood or youth, adulthood, seniority - through questionnaires aimed at researching the peculiar characteristics that contemporary intergenerational housing should include; the questionnaires are then compared with each other in order to identify any recurring patterns by age group and/or influenced by the specialist knowledge on the subject of the architects compared to the rest of the user sample. The results indicate that among specialist users in the field of architecture, young students identify home automation as the key to the inclusion of the weakest groups within the building, adult architects believe that the identification of intergenerational/community services within the building is the cornerstone, and senior architects focus on widespread spatial accessibility. At the same time, the results among non-specialist users do not identify a significantly diversified model by age group but are generally in agreement in the importance of separation between private environments and collective spaces. The interpretation of the results obtained leads to a compositional study of a new building typology with the future objective of channeling the subsequent outcomes within the regulatory adjustments of the sector.

Keywords: intergenerational living, social sustainability, health, lifestyle, well-being

Procedia PDF Downloads 69
940 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
939 A Study on Micro-Renewal of Mountainous Urban Communities Based on Child-Friendliness

Authors: Zipei Yin

Abstract:

Community space is the main place for children's daily outdoor activities. The mountain community space has the typical characteristics of a closed natural environment, a scattered population layout with height differences, and a relatively independent group structure. This has resulted in special limitations on children's outdoor activities in terms of safety, accessibility, and appropriateness, which urgently makes it necessary to explore how to construct children's activity spaces in mountainous societies under the special limitations. This study investigated the activity spaces for children aged 3-11 years old in typical old communities in Chongqing and evaluated them based on the dimensions of spatial characteristics, environmental safety, and connectivity to summarise three typical patterns of children's outdoor activity spaces in old communities in mountainous cities. Then, under the framework of the appeal of the child-friendly urban environment, taking advantage of the characteristics of the old community in mountain cities compared with the plain urban community, such as complex social form, diversified functional positioning, and good foundation of autonomy, this paper explores the micro-renewal path and strategy of the compound utilization of community public space from the two levels of design and governance, so as to further promote the research and practice of the healthy development of mountain urban community environment.

Keywords: child-friendly, healthy community, community public space, mountainous urban community, community renewal

Procedia PDF Downloads 60
938 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161