Search results for: sensory processing sensitivity
3957 Reliability-Based Design of an Earth Slope Taking into Account Unsaturated Soil Properties
Authors: A. T. Siacara, A. T. Beck, M. M. Futai
Abstract:
This paper shows how accurately and efficiently reliability analyses of geotechnical installations can be performed by directly coupling geotechnical software with a reliability solver. An earth slope is used as the study object. The limit equilibrium method of Morgenstern-Price is used to calculate factors of safety and find the critical slip surface. The deterministic software package Seep/W and Slope/W is coupled with the StRAnD reliability software. Reliability indexes of critical probabilistic surfaces are evaluated by the first-order reliability methods (FORM). By means of sensitivity analysis, the effective cohesion (c') is found to be the most relevant uncertain geotechnical parameter for slope equilibrium. The slope was tested using different geometries, taking into account unsaturated soil properties. Finally, a critical slip surface, identified in terms of minimum factor of safety, is shown here not to be the critical surface in terms of reliability index.Keywords: slope, unsaturated, reliability, safety, seepage
Procedia PDF Downloads 1493956 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network
Authors: R. Boudjelthia
Abstract:
The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete
Procedia PDF Downloads 3793955 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 7153954 The Effects of Prosthetic Leg Stiffness on Gait, Comfort, and Satisfaction: A Review of Mechanical Engineering Approaches
Authors: Kourosh Fatehi, Niloofar Hanafi
Abstract:
One of the challenges in providing optimal prosthetic legs for lower limb amputees is to select the appropriate foot stiffness that suits their individual needs and preferences. Foot stiffness affects various aspects of walking, such as stability, comfort, and energy expenditure. However, the current prescription process is largely based on trial-and-error, manufacturer recommendations, or clinician judgment, which may not reflect the prosthesis user’s subjective experience or psychophysical sensitivity. Therefore, there is a need for more scientific and technological tools to measure and understand how prosthesis users perceive and prefer different foot stiffness levels, and how this preference relates to clinical outcomes. This review covers how to measure and design lower leg prostheses based on user preference and foot stiffness. It also explores how these factors affect walking outcomes and quality of life, and identifies the current challenges and gaps in this field from a mechanical engineering standpoint.Keywords: perception, preference, prosthetics, stiffness
Procedia PDF Downloads 813953 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study
Authors: Tiffany Yung Hsuan Ma
Abstract:
The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education
Procedia PDF Downloads 703952 Deproteinization of Moroccan Sardine (Sardina pilchardus) Scales: A Pilot-Scale Study
Authors: F. Bellali, M. Kharroubi, Y. Rady, N. Bourhim
Abstract:
In Morocco, fish processing industry is an important source income for a large amount of by-products including skins, bones, heads, guts, and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Sardina plichardus scales from resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic, and biomedical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. And the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The advancement from lab scale to pilot scale is a critical stage in the technological development. In this study, the optimal condition for the deproteinization which was validated at laboratory scale was employed in the pilot scale procedure. The deproteinization of fish scale was then demonstrated on a pilot scale (2Kg scales, 20l NaOH), resulting in protein content (0,2mg/ml) and hydroxyproline content (2,11mg/l). These results indicated that the pilot-scale showed similar performances to those of lab-scale one.Keywords: deproteinization, pilot scale, scale, sardine pilchardus
Procedia PDF Downloads 4463951 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 2083950 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 723949 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement
Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof
Abstract:
A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field
Procedia PDF Downloads 6613948 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 3753947 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 163946 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes
Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li
Abstract:
An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion
Procedia PDF Downloads 4073945 In vitro Studies on Antimycobacterial and Efflux Pump Inhibition of C. roseus and P. nigrum against Clinical Isolates of Ofloxacin Resistant M. tuberculosis
Authors: Raja Arunprasath, P. Gajalakshmi
Abstract:
Antimycobacterial activity of C. roseus rosea and piperine was evaluated against ofloxacin resistant M. tuberculosis. Among the 68 suspected sputum samples, 32 were AFB positive belongs to age group of 40-50years. Susceptibility of M. tuberculosis was evaluated against ofloxacin and streptomycin by colorimetric assay. Of these 32 positive samples, 20 isolates were resistant to ofloxacin, 12 were resistant to Streptomycin and none of them were found to be multidrug resistant. The sensitivity pattern of ofloxacin resistant M. tuberculosis against two tested plant extracts showed potent tubercular activity. Antimycobacterial activity of C. roseus was 22 + 2.21mm and piperine was found to be 20 + 1.08 mm. The percentage of relative inhibitory zone of C. roseus was 133 % and piperine was found to be 111 %. The MIC of C. roseus and piperine was found at 50 µg/ml. Based on the FICI value 0.37 confirms that both the tested phytochemicals were synergistically active against M. tuberculosis. The MIC of ofloxacin was reduced from 8 mg to 2 mg/l in the presence of piperine but not by C. roseus. This is the first report on Synergistic bioactivity of C. roseus rosea and piperine fractionation leads development of novel antimycobacterial prophylaxis in future.Keywords: C. roseus, ofloxacin, piperine, synergistic
Procedia PDF Downloads 4603944 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1813943 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)
Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé
Abstract:
Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)
Procedia PDF Downloads 873942 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters
Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev
Abstract:
Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters
Procedia PDF Downloads 1973941 Studying Roughness Effects on Flow Regimes in Offshore Pipelines
Authors: Mohammad Sadegh Narges, Zahra Ghadampour
Abstract:
Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system.Keywords: absolute roughness, flow regime, multi-phase flow, offshore pipelines
Procedia PDF Downloads 3743940 Gnss Aided Photogrammetry for Digital Mapping
Authors: Muhammad Usman Akram
Abstract:
This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry
Procedia PDF Downloads 323939 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 1423938 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation
Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk
Abstract:
The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set
Procedia PDF Downloads 2193937 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water
Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis
Abstract:
Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.Keywords: disinfection, groundwater, hydrosonication, UV-C
Procedia PDF Downloads 1723936 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium
Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool
Abstract:
Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.Keywords: wastewater, staphylococcus, chromium, bioremediation
Procedia PDF Downloads 1693935 The Impacts of Cultural Event on Networking: Liverpool's Cultural Sector in the Aftermath of 2008
Authors: Yi-De Liu
Abstract:
The aim of this paper is to discuss how the construct of networking and social capital can be used to understand the effect events can have on the cultural sector. Based on case study, this research sought the views of those working in the cultural sector on Liverpool’s year as the European Capital of Culture (ECOC). Methodologically, this study involves literature review to prompt theoretical sensitivity, the collection of primary data via online survey (n= 42) and follow-up telephone interviews (n= 8) to explore the emerging findings in more detail. The findings point to a number of ways in which the ECOC constitutes a boost for networking and its effects on city’s cultural sector, including organisational learning, aspiration and leadership. The contributions of this study are two-fold: (1) Evaluating the long-term effects on network formation in the cultural sector following major event; (2) conceptualising the impact assessment of organisational social capital for future ECOC or similar events.Keywords: network, social capital, cultural impact, european capital of culture
Procedia PDF Downloads 2043934 The Effect of Music Therapy on Anxiety, Fear and Pain Management in 6-12 Year Old Children Undergoing Surgery
Authors: Özgür Bahadir, Meltem Kurtuncu
Abstract:
The study was designed as quasi-experimental and conducted to determine the effect of music therapy on anxiety, fear and pain management in 6-12-year-old children undergoing surgery. The present study was carried out between 01.01.2016 and 19.08.2016 in BEU. Application and Research Center. The children aged 6 -12 who applied for surgery between the mentioned dates constituted the universe of the study. In the quasi-experimental study that was conducted in the clinics where children received operational treatment, two groups were formed: experimental group (the children who received musical therapy before the surgery) and control group (the children who were administered surveys and the surgery service routines only). Each group consisted of 30 children, and the participants of the study were 60 children in total. Necessary permissions were obtained from the parents of the children hospitalized before the beginning of the implementation. The data was collected through Child Anxiety Sensitivity Index (CASI), “Fear In Medical Treatment Scale”, Face, Legs, Activity, Cry, Consolability Scale (FLACC), Visual Analog Scale (VAS) and Participant Information Form. In the analysis of the data, Kolmogorov-Smirnov distribution scale was used to examine the normality of the distribution along with descriptive statistics methods (Frequency, Percentage, Mean, Standard Deviation). Data was presented in the tables in numbers and percentages. Means were demonstrated along with the standard deviations. The research compared children received; case and control groups include socio-demographic perspective, non-significant difference statistically among similar groups are intertwined. The general level of fear regarding the medical processes before returning to service after the operation and 30 minutes before getting discharged was found to be significantly low in the experimental group compared to control group (p<0.05). No statistically significant difference was found between experimental and control groups in terms of general level of fear regarding the medical processes before the operation, during the operation day and in the recovery room after the operation (p>0.05). Total CASI AD (anxiety sensitivity) levels before the operation, day of the operation and 30 minutes before the discharge for patients in experimental group was found to be significantly higher than the control group (p>0.05). There was no statistically significant difference between the experimental and control groups in the total CASI AD levels for the post-operative recovery room and for returning to the service room after the operation (p>0.05). VAS levels for patients in the experimental group in the post-operative recovery room was significantly higher than the control group (p>0.05). There was no statistically significant difference between the groups in terms of VAS findings in returning to service room after the operation and in 30 minutes before the discharge (p>0.05). As a result of the research; applied children music therapy in the experimental group anxiety, fear, and pain of the scales, their scores average, is lower than the control group children in this situation an increase in the satisfaction of children and parents was observed. In line with this, music therapy preoperative anxiety, fear, and can be used as an effective method of decreasing postoperative pain clinics is suggested.Keywords: anxiety, children, fear, music therapy, pain
Procedia PDF Downloads 2233933 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)
Authors: Mohamed Hamada Abdelkader Fayed
Abstract:
Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy
Procedia PDF Downloads 2153932 Cytotoxic Activity against MCF-7 Breast Cancer Cells and Antioxidant Property of Aqueous Tempe Extracts from Extended Fermentation
Authors: Zatil Athaillah, Anastasia Devi, Dian Muzdalifah, Wirasuwasti Nugrahani, Linar Udin
Abstract:
During tempe fermentation, some chemical changes occurred and they contributed to sensory, appearance, and health benefits of soybeans. Many studies on health properties of tempe have specialized on their isoflavones. In this study, other components of tempe, particularly water soluble chemicals, was investigated for their biofunctionality. The study was focused on the ability to suppress MCF-7 breast cancer cell growth and antioxidant activity, as expressed by DPPH radical scavenging activity, total phenols and total flavonoids, of the water extracts. Fermentation time of tempe was extended up to 120 hr to increase the possibility to find the functional components. Extraction yield and soluble nitrogen content were also quantified as accompanying data. Our findings suggested that yield of water extraction of tempe increased as fermentation was extended up to 120 hr, except for a slight decrease at 72 hr. Water extracts of tempe showed inhibition of MCF-7 breast cancer cell growth, as shown by lower IC50 values when compared to control (unfermented soybeans). Among the varied fermentation timescales, 60-hr period showed the highest activity (IC50 of 8.7 ± 4.95 µg/ml). The anticancer activity of extracts obtained from different fermentation time was positively correlated with total soluble nitrogens, but less relevant with antioxidant data. During 48-72 hr fermentation, at which cancer suppression activity was significant, the antioxidant properties from the three assays were not higher than control. These findings indicated that water extracts of tempe from extended fermentation could inhibit breast cancer cell growth but further study to determine the mechanism and compounds that play important role in the activity should be conducted.Keywords: tempe, anticancer, antioxidant, phenolic compounds
Procedia PDF Downloads 2453931 Human Behavioral Assessment to Derive Land-Use for Sustenance of River in India
Authors: Juhi Sah
Abstract:
Habitat is characterized by the inter-dependency of environmental elements. Anthropocentric development approach is increasing our vulnerability towards natural hazards. Hence, manmade interventions should have a higher level of sensitivity towards the natural settings. Sensitivity towards the environment can be assessed by the behavior of the stakeholders involved. This led to the establishment of a hypothesis: there exists a legitimate relationship between the behavioral sciences, land use evolution and environment conservation, in the planning process. An attempt has been made to establish this relationship by reviewing the existing set of knowledge and case examples pertaining to the three disciplines under inquiry. Understanding the scarce & deteriorating nature of fresh-water reserves of earth and experimenting the above concept, a case study of a growing urban center's river flood plain is selected, in a developing economy, India. Cases of urban flooding in Chennai, Delhi and other mega cities of India, imposes a high risk on the unauthorized settlement, on the floodplains of the rivers. The issue addressed here is the encroachment of floodplains, through psychological enlightenment and modification through knowledge building. The reaction of an individual or society can be compared to a cognitive process. This study documents all the stakeholders' behavior and perception for their immediate natural environment (water body), and produce various land uses suitable along a river in an urban settlement as per different stakeholder's perceptions. To assess and induce morally responsible behavior in a community (small scale or large scale), tools of psychological inquiry is used for qualitative analysis. The analysis will deal with varied data sets from two sectors namely: River and its geology, Land use planning and regulation. Identification of a distinctive pattern in the built up growth, river ecology degradation, and human behavior, by handling large quantum of data from the diverse sector and comments on the availability of relevant data and its implications, has been done. Along the whole river stretch, condition and usage of its bank vary, hence stakeholder specific survey questionnaires have been prepared to accurately map the responses and habits of the rational inhabitants. A conceptual framework has been designed to move forward with the empirical analysis. The classical principle of virtues says "virtue of a human depends on its character" but another concept defines that the behavior or response is a derivative of situations and to bring about a behavioral change one needs to introduce a disruption in the situation/environment. Owing to the present trends, blindly following the results of data analytics and using it to construct policy, is not proving to be in favor of planned development and natural resource conservation. Thus behavioral assessment of the rational inhabitants of the planet is also required, as their activities and interests have a large impact on the earth's pre-set systems and its sustenance.Keywords: behavioral assessment, flood plain encroachment, land use planning, river sustenance
Procedia PDF Downloads 1173930 Signal Processing of the Blood Pressure and Characterization
Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig
Abstract:
In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.Keywords: blood pressure, SBP, DBP, detection algorithm
Procedia PDF Downloads 4393929 Flashover Detection Algorithm Based on Mother Function
Authors: John A. Morales, Guillermo Guidi, B. M. Keune
Abstract:
Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.Keywords: mother function, outages, lightning, sensitivity analysis
Procedia PDF Downloads 5873928 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 177