Search results for: raised intraocular pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4704

Search results for: raised intraocular pressure

2664 Training Student Teachers to Work in Partnership with Parents of Students with Special Needs

Authors: Alicia Greenbank, Efrat Bengio

Abstract:

The aim of this research was to examine the efficacy of the first course in Israel, whose objective is to train student teachers in the special education department to work cooperatively with parents of children with special needs. Studies often highlight the importance of cooperation between teachers and parents of students with special needs. Israel’s Special Education Law defines parents as complete partners, and the Ministry of Education encourages and even requires that partnership be present. Yet this partnership is difficult to achieve many kindergarten teachers, and teachers have a lot of difficulties establishing and managing a pattern of cooperation with their students’ parents. Often we see different perspectives on the child's development and needs, distrust, lack of appreciation, and communication difficulties on both sides – parents & teachers. The course describes a method of instilling the need for cooperation at an early stage of teacher training-in the teacher training program. 22 students in the special education program for early childhood education in the fourth year of learning took part in the course. The fourth-year is the experiential training year and the first time that students have worked in a school. The course consisted of 14 sessions. Seven parents of students with different disabilities participated at 6 of the sessions. The changes in the students' attitudes towards partnership and their ability to manage this partnership were carried out by examining the reports written by the students before the meetings with the parents and the reflections they wrote after each meeting with the parents and at the end of the course. Three themes emerged from the narrative analysis, corresponding to the three preconditions for joint activities with parents — Approach, Attitude, Appropriate Atmosphere, according to the Four A’s Model. The findings showed that a course combining meetings with parents of children with special needs offers many benefits for teacher training. The course raised student awareness of the question partnership, changed students’ approaches and attitudes towards the parents, stressed the importance of partnership, and provided students with tools for working with parents through the school. Based on the findings of this study, courses in this format can be applied in order to cooperate between teachers and parents, for example, parents of gifted children with special needs.

Keywords: Partnership with parents in special education, parents of children with disabilities, parents of children with special needs, parents’ involvement in special education

Procedia PDF Downloads 185
2663 Effects of Anti-FGL2 Monoclonal Antibody SPF89 on Vascular Inflammation

Authors: Ying Sun, Biao Cheng, Qing Lu, Xuefei Tao, Xiaoyu Lai, Cheng Guo, Dan Wang

Abstract:

Fibrinogen-like protein 2 (FGL2) has recently been identified to play an important role in inflammatory diseases such as atherosclerosis through a thrombin-dependent manner. Here, a murine monoclonal antibody was raised against the critical residue Ser(89) of FGL2, and the effects of the anti-FGL2 mAb (SPF89) were analyzed in human umbilical vein endothelial cells (HUVECs) and THP-1 cells. Firstly, it was proved that SPF89, which belongs to the IgG1 subtype with a KD value of 44.5 pM, could specifically show the expression levels of protein FGL2 in different cell lines of known target gene status. The lipopolysaccharide (LPS)-mediated endothelial cell proliferation was significantly inhibited with a decline of phosphorylation nuclear factor-κB (NF-κB) in a dose-dependent manner after SPF89 treatment. Furthermore, SPF89 reduced LPS-induced expression of adhesion molecules and inflammatory cytokines such as vascular cell adhesion molecule-1, tumor necrosis factor-α, Matrix metalloproteinase MMP-2, Integrin αvβ3, and interleukin-6 in HUVECs. In macrophage-like THP-1 cells, SPF89 effectively inhibited LPS and low-density lipoprotein-induced foam cell formation. However, these anti-inflammatory and anti-atherosclerotic effects of anti-FGL2 mAb in HUVECs and THP-1 cells were significantly reduced after treatment with an NF-κB inhibitor PDTC. All the above suggest, by efficiently inhibiting LPS-induced pro-inflammatory effects in vascular endothelial cells by attenuating NF-κB dependent pathway, the new anti-FGL2 mAb SPF89 could to be a potential therapeutic candidate for protecting the vascular endothelium against inflammatory diseases such as atherosclerosis. This work was supported by the Program of Sichuan Science and Technology Department (2017FZ0069) and Collaborative Innovation Program of Sichuan for Elderly Care and Health(YLZBZ1511).

Keywords: monoclonal antibody, fibrinogen like protein 2, inflammation, endothelial cells

Procedia PDF Downloads 251
2662 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology

Authors: Zhao Xueran, Yang Dong

Abstract:

In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.

Keywords: sidetracking, coiled tubing, orienter, rotary steering system

Procedia PDF Downloads 151
2661 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis

Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa

Abstract:

Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.

Keywords: artificial intelligence, human resources, bibliometric analysis, research directions

Procedia PDF Downloads 92
2660 Differential Diagnosis of Malaria and Dengue Fever on the Basis of Clinical Findings and Laboratory Investigations

Authors: Aman Ullah Khan, Muhammad Younus, Aqil Ijaz, Muti-Ur-Rehman Khan, Sayyed Aun Muhammad, Asif Idrees, Sanan Raza, Amar Nasir

Abstract:

Dengue fever and malaria are important vector-borne diseases of public health significance affecting millions of people around the globe. Dengue fever is caused by Dengue virus while malaria is caused by plasmodium protozoan. Generally, the consequences of Malaria are less severe compared to dengue fever. This study was designed to differentiate dengue fever and malaria on the basis of clinical and laboratory findings and to compare the changes in both diseases having different causative agents transmitted by the common vector. A total of 200 patients of dengue viral infection (120 males, 80 females) were included in this prospective descriptive study. The blood samples of the individuals were first screened for malaria by blood smear examination and then the negative samples were tested by anti-dengue IgM strip. The strip positive cases were further screened by IgM capture ELISA and their complete blood count including hemoglobin estimation (Hb), total and differential leukocyte counts (TLC and DLC), erythrocyte sedimentation rate (ESR) and platelet counts were performed. On the basis of the severity of signs and symptoms, dengue virus infected patients were subdivided into dengue fever (DF) and dengue hemorrhagic fever (DHF) comprising 70 and 100 confirmed patients, respectively. On the other hand, 30 patients were found infected with Malaria while overall 120 patients showed thrombocytopenia. The patients of DHF were found to have more leucopenia, raised hemoglobin level and thrombocytopenia < 50,000/µl compared to the patients belonging to DF and malaria. On the basis of the outcomes of the study, it was concluded that patients affected by DF were at a lower risk of undergoing haematological disturbance than suffering from DHF. While, the patients infected by Malaria were found to have no significant change in their blood components.

Keywords: dengue fever, blood, serum, malaria, ELISA

Procedia PDF Downloads 384
2659 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts

Authors: Velid Demir, Mesut Akgün

Abstract:

The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.

Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification

Procedia PDF Downloads 81
2658 The Influence of Project-Based Learning and Outcome-Based Education: Interior Design Tertiary Students in Focus

Authors: Omneya Messallam

Abstract:

Technology has been developed dramatically in most of the educational disciplines. For instance, digital rendering subject, which is being taught in both Interior and Architecture fields, is witnessing almost annually updated software versions. A lot of students and educators argued that there will be no need for manual rendering techniques to be learned. Therefore, the Interior Design Visual Presentation 1 course (ID133) has been chosen from the first level of the Interior Design (ID) undergraduate program, as it has been taught for six years continually. This time frame will facilitate sound observation and critical analysis of the use of appropriate teaching methodologies. Furthermore, the researcher believes in the high value of the manual rendering techniques. The course objectives are: to define the basic visual rendering principles, to recall theories and uses of various types of colours and hatches, to raise the learners’ awareness of the value of studying manual render techniques, and to prepare them to present their work professionally. The students are female Arab learners aged between 17 and 20. At the outset of the course, the majority of them demonstrated negative attitude, lacking both motivation and confidence in manual rendering skills. This paper is a reflective appraisal of deploying two student-centred teaching pedagogies which are: Project-based learning (PBL) and Outcome-based education (OBE) on ID133 students. This research aims of developing some teaching strategies to enhance the quality of teaching in this given course over an academic semester. The outcome of this research emphasized the positive influence of applying such educational methods on improving the quality of students’ manual rendering skills in terms of: materials, textiles, textures, lighting, and shade and shadow. Furthermore, it greatly motivated the students and raised the awareness of the importance of learning the manual rendering techniques.

Keywords: project-based learning, outcome-based education, visual presentation, manual render, personal competences

Procedia PDF Downloads 154
2657 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

Authors: Sy-Wei Lo, Chi-Heng Yu

Abstract:

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.

Keywords: aerostatic, bearing, polymer, static stiffness

Procedia PDF Downloads 365
2656 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.

Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization

Procedia PDF Downloads 136
2655 Different Types of Amyloidosis Revealed with Positive Cardiac Scintigraphy with Tc-99M DPD-SPECT

Authors: Ioannis Panagiotopoulos, Efstathios Kastritis, Anastasia Katinioti, Georgios Efthymiadis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Transthyretin amyloidosis (ATTR) is a rare but serious infiltrative disease. Myocardial scintigraphy with DPD has emerged as the most effective, non-invasive, highly sensitive, and highly specific diagnostic method for cardiac ATTR amyloidosis. However, there are cases in which additional laboratory investigations reveal AL amyloidosis or other diseases despite a positive DPD scintigraphy. We describe the experience from the Onassis Cardiac Surgery Center and the monitoring center for infiltrative myocardial diseases of the cardiology clinic at AHEPA. Materials and Methods: All patients with clinical suspicion of cardiac or extracardiac amyloidosis undergo a myocardial scintigraphy scan with Tc-99m DPD. In this way, over 500 patients have been examined. Further diagnostic approach based on clinical and imaging findings includes laboratory investigation and invasive techniques (e.g., biopsy). Results: Out of 76 patients in total with positive myocardial scintigraphy Grade 2 or 3 according to the Perugini scale, 8 were proven to suffer from AL Amyloidosis during the investigation of paraproteinemia. Among these patients, 3 showed Grade 3 uptake, while the rest were graded as Grade 2, or 2 to 3. Additionally, one patient presented diffuse and unusual radiopharmaceutical uptake in soft tissues throughout the body without cardiac involvement. These findings raised suspicions, leading to the analysis of κ and λ light chains in the serum, as well as immunostaining of proteins in the serum and urine of these specific patients. The final diagnosis was AL amyloidosis. Conclusion: The value of DPD scintigraphy in the diagnosis of cardiac amyloidosis from transthyretin is undisputed. However, positive myocardial scintigraphy with DPD should not automatically lead to the diagnosis of ATTR amyloidosis. Laboratory differentiation between ATTR and AL amyloidosis is crucial, as both prognosis and therapeutic strategy are dramatically altered. Laboratory exclusion of paraproteinemia is a necessary and essential step in the diagnostic algorithm of ATTR amyloidosis for all positive myocardial scintigraphy with diphosphonate tracers since >20% of patients with Grade 3 and 2 uptake may conceal AL amyloidosis.

Keywords: AL amyloidosis, amyloidosis, ATTR, myocardial scintigraphy, Tc-99m DPD

Procedia PDF Downloads 65
2654 Assessment of Ocular Morbidity, Knowledge and Barriers to Access Eye Care Services among the Children Live in Offshore Island, Bangladesh

Authors: Abir Dey, Shams Noman

Abstract:

Introduction: Offshore Island is the remote and isolated area from the terrestrial mainland. They are deprived of their needs. The children from an offshore island are usually underserved in the case of health care because it is a remote area where the health care systems are quite poor compared to mainland. So, the proper information is required for appropriate planning to reduce underlying causes behind visual deprivation among the surviving children of the Offshore Island. Purpose: The purpose of this study was to determine ocular morbidities, knowledge, and barriers of eye care services among children in an Offshore Island. Methods: The study team visited, and all data were collected from different rural communities at Sandwip Upazila, Chittagong district for screening the children aged 5-16 years old by doing spot examination. The whole study was conducted in both qualitative and quantitative methods. To determine ocular status of children, examinations were done under skilled Ophthalmologists and Optometrists. A focus group discussion was held. The sample size was 490. It was a community based descriptive study and the sampling method was purposive sampling. Results: In total 490 children, about 56.90% were female and 43.10% were male. Among them 456 were school-going children (93.1%) and 34 were non-school going children (6.9%). In this study the most common ocular morbidity was Allergic Conjunctivitis (35.2%). Other mentionable ocular morbidities were Refractive error (27.7%), Blepharitis (13.8%), Meibomian Gland Dysfunction (7.5%), Strabismus (6.3%) and Amblyopia (6.3%). Most of the non-school going children were involved in different types of domestic work like farming, fishing, etc. About 90.04% children who had different ocular abnormalities could not attend to the doctor due to various reasons. Conclusions: The ocular morbidity was high in rate on the offshore island. Eye health care facility was also not well established there. Awareness should be raised about necessity of maintaining hygiene and eye healthcare among the island people. Timely intervention through available eye care facilities and management can reduce the ocular morbidity rate in that area.

Keywords: morbidities, screening, barriers, offshore island, knowledge

Procedia PDF Downloads 148
2653 Study of the Mental Toughness of the Basketball Players

Authors: Jaswinder Singh

Abstract:

The purpose of the study was to compare the mental toughness between male and female basketball players of District shri muktsar sahib Panjab. A sample of fifty male players (N=50) age ranging 18 to 25 years and Fifty female player(N=50) age ranging 18 to 25 years. The Data was collected by using mental toughness questionnaire developed by Goldberg (1998). The t-test was applied to assess the differences male and female basketball players. The level of significance was set at 0.05. Study revealed that there were significant differences male and female basketball players with regard to Rebound Ability, Ability to Handle Pressure, Confidence and Overall Mental Toughness and insignificant differences with regard to Concentration and Motivation.

Keywords: mental toughness, basketball, psychological, competitive

Procedia PDF Downloads 247
2652 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures

Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev

Abstract:

Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.

Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF

Procedia PDF Downloads 393
2651 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý

Abstract:

A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.

Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping

Procedia PDF Downloads 529
2650 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 178
2649 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles

Procedia PDF Downloads 253
2648 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 184
2647 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 84
2646 Quality Tools for Shaping Quality of Learning and Teaching in Education and Training

Authors: Renga Rao Krishnamoorthy, Raihan Tahir

Abstract:

The quality of classroom learning and teaching delivery has been and will continue to be debated at various levels worldwide. The regional cooperation programme to improve the quality and labour market orientation of the Technical and Vocational Education and Training (RECOTVET), ‘Deutsche Gesellschaft für Internationale Zusammenarbeit’ (GIZ), in line with the sustainable development goals (SDG), has taken the initiative in the development of quality TVET in the ASEAN region by developing the Quality Toolbox for Better TVET Delivery (Quality Toolbox). This initiative aims to provide quick and practical materials to trainers, instructors, and personnel involved in education and training at an institute to shape the quality of classroom learning and teaching. The Quality Toolbox for Better TVET Delivery was developed in three stages: literature review and development, validation, and finalization. Thematic areas in the Quality Toolbox were derived from collective input of concerns and challenges raised from experts’ workshops through moderated sessions involving representatives of TVET institutes from 9 ASEAN Member States (AMS). The sessions were facilitated by professional moderators and international experts. TVET practitioners representing AMS further analysed and discussed the structure of the Quality Toolbox and content of thematic areas and outlined a set of specific requirements and recommendations. The application exercise of the Quality Toolbox was carried out by TVET institutes among ASM. Experience sharing sessions from participating ASEAN countries were conducted virtually. The findings revealed that TVET institutes use two types of approaches in shaping the quality of learning and teaching, which is ascribed to inductive or deductive, shaping of quality in learning and teaching is a non-linear process and finally, Q-tools can be adopted and adapted to shape the quality of learning and teaching at TVET institutes in the following: improvement of the institutional quality, improvement of teaching quality and improvement on the organisation of learning and teaching for students and trainers. The Quality Toolbox has good potential to be used at education and training institutes to shape quality in learning and teaching.

Keywords: AMS, GIZ, RECOTVET, quality tools

Procedia PDF Downloads 124
2645 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer

Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee

Abstract:

With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.

Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software

Procedia PDF Downloads 75
2644 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 120
2643 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania

Authors: Walter M. Millanzi, Stephen M. Kibusi

Abstract:

Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.

Keywords: facilitation, metacognition, motivation, self-directed

Procedia PDF Downloads 183
2642 Commodity Factory or Food Farms an Irrational Dilemma: Reflections on the Brazilian Scenario

Authors: Monica Dantas

Abstract:

At what socio-economic costs can the food industry offer products at low prices? This research seeks to understand and to explore how we attribute competence and meaning, what enables the outcomes of agriculture and what institutions provides validation regarding food production. This study objective is to explain and interpret conditions of the present state of agriculture in Brazil centring on two distinct segments, agribusiness and family farming, as the Brazilian, rapidly changing political environment unfolds. The approach is grounded in multidisciplinary literature drawing from the politics of development, the sociology of food, the sustainability framework and the conceptual differences between agribusiness and family farming regarding the innate purpose of the two segments. In addition, a quantitative portion of the research includes secondary data analysis from statistical measurements, economic indicators, federal budget information, and census data to compare the two segments, conveying a general snapshot of the conditions investigated. The results raised questions about the perceived image of the success of agribusiness, against some contradicting economic checks and balances. Analyzing how public funds are invested in agriculture shed light on what can enable or undermine the development of food systems in Brazil. It also revealed how politics, ideology, and corporations might influence the Brazilian Federal. In the 2000-2018 observed timeline of annual federal spending on agriculture in Brazil, there is variation in the amount invested in family farming that seems to 'coincide' with the ideological direction of the federal government in power. It was also observed that significant changes in the institutional framework and financial support either promoted or purposely undermined family farming importance using public institutions to validate support for agribusiness.

Keywords: food politics, sustainability, family farming, food system, public budget

Procedia PDF Downloads 122
2641 Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe

Authors: T. Mushiri, K. Tengende, C. Mbohwa, T. Garikayi

Abstract:

This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading.

Keywords: reinforced concrete silo, finite element analysis, T-FLEX software, AutoCAD

Procedia PDF Downloads 475
2640 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 262
2639 Numerical Investigation of the Electromagnetic Common Rail Injector Characteristics

Authors: Rafal Sochaczewski, Ksenia Siadkowska, Tytus Tulwin

Abstract:

The paper describes the modeling of a fuel injector for common rail systems. A one-dimensional model of a solenoid-valve-controlled injector with Valve Closes Orifice (VCO) spray was modelled in the AVL Hydsim. This model shows the dynamic phenomena that occur in the injector. The accuracy of the calibration, based on a regulation of the parameters of the control valve and the nozzle needle lift, was verified by comparing the numerical results of injector flow rate. Our model is capable of a precise simulation of injector operating parameters in relation to injection time and fuel pressure in a fuel rail. As a result, there were made characteristics of the injector flow rate and backflow.

Keywords: common rail, diesel engine, fuel injector, modeling

Procedia PDF Downloads 407
2638 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 221
2637 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 543
2636 Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W

Authors: Abdelatif Gadoum, Djilali Benyoucef, Mouloudj Hadj, Alla Eddine Toubal Maamar, Mohamed Habib Allah Lahoual

Abstract:

Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%.

Keywords: hydrogen production, inductively coupled plasma, fluid model, methane plasma

Procedia PDF Downloads 152
2635 Horizontal Directivity of Pipa Radiation

Authors: Xin Wang, Yuanzhong Wang

Abstract:

Pipa is one of the most important Chinese traditional plucked instruments, but its directivity has never been measured systematically. In western, directivity of loudness for western instruments is deeply researched through analysis of sound pressure level, whereas the directivity of timbre is seldom studied. In this paper, a new method for directivity of timbre was proposed, and horizontal directivity patterns of loudness and timbre of Pipa were measured. Directivity of Pipa radiation was measured in an anechoic room. The sound of Pipa played by a musician was recorded simultaneously by 32 microphones with Pipa in the center. The measuring results were examined through listening test. According to the measurement of Pipa directivity radiation, we put forward the best localization of Pipa in the Chinese traditional orchestra and the optimal recording region.

Keywords: directivity, Pipa, roughness, listening test

Procedia PDF Downloads 472