Search results for: location-allocation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6793

Search results for: location-allocation models

4753 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 730
4752 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 138
4751 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 333
4750 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 431
4749 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 94
4748 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 158
4747 Accountant Strategists Challenge the Dominant Business Model: A Strategy-as-Practice Perspective

Authors: Lindie Grebe

Abstract:

This paper reports on a study that explored the strategizing practices of professional accountants in the mining industry, based on Jarratt and Stiles’ dominant strategizing practice models framework. Drawing on a strategy-as-practice perspective, the paper recognises qualified professional accountants in strategic management such as Chief Executive Officers, as strategy practitioners that perform their strategizing practices and praxis within a specific context. The main findings of this paper were produced through semi-structured individual interviews with accountants that perform strategy on a business level in the South African mining industry. Qualitative data were analysed through conversation analysis over two coding-cycles. Findings describe accountant strategists as practitioners who challenge the dominant business model when a disconnect seems to exist between international corporate level strategy and business level strategy in the South African mining industry. Accountant strategy practitioners described their dominant strategizing practice model as incremental change during strategic planning and as a lived experience during strategy implementation. Findings portrayed these strategists as taking initiative as strategy leaders in a dynamic and volatile environment to combine their accounting background with strategic management and challenge the dominant business model. Understanding how accountant strategists perform strategizing offers insight into the social practice of strategic management. This understanding contributes to the body of knowledge on strategizing in the South African mining industry. In addition, knowledge on the transformation of accountants as strategists could provide valuable practice relevant insights for accounting educators and the accounting profession alike.

Keywords: accountant strategists, dominant strategizing practice models framework, mining industry, strategy-as-practice

Procedia PDF Downloads 178
4746 Entrepreneur Competencies: An Exploratory Study Applied to Educational Social Enterprise in South East Asia

Authors: D. Songpol, K. Taweesak, T. Sookyuen

Abstract:

A social enterprise is an organization that operates commercial business as a source of income with the aim of addressing social and environmental issues. Though it is clear that this kind of organization will benefit society and environment but in practice, it is found that most of social enterprises’ goals cannot be achieved. The most success factors of social enterprises usually rely on individual characteristics of entrepreneurs, especially in educational business. This study aims to find out the magnitude of influence from the components of entrepreneur competencies to social enterprises in education. There are developmental models of research demonstrating that knowledge, skills and attributes affect the success of social enterprises in term of sustainability, social opportunities and innovation leadership. The 5-scale questionnaire was used to collect data from the social entrepreneurs in education who operates in the South East Asian region of 135 samples and then processed by the methods of structural equation models. The results show that the competency of entrepreneurs in attributes has the greatest impact on the success of social enterprises while the skills and knowledge have respectively impact on the social enterprises’ success as well. The reason why attributes of entrepreneurs have the greatest impact on social enterprise success is because, social enterprise is an organization that does not motivate or provide attractive financial incentives to the entrepreneur. Entrepreneurs, who succeed in developing their organizations, therefore need attribute factor higher than normal entrepreneurs, especially those in education sector that have somewhat few human resources to operate their businesses. More importantly, attribute’s traits such as entrepreneurial passion, self-efficacy, entrepreneurial identity and, innovativeness and perseverance will significantly affect the ideology and tolerance of the entrepreneurs once facing the problem in doing business. In conclusion, the education social enterprise would be successful depending on the performance of the entrepreneurs which derives from higher attributes competency.

Keywords: education, entrepreneur competencies, social enterprise, South East Asia

Procedia PDF Downloads 158
4745 Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)

Authors: Hadda Krarcha, S. Messaasdi

Abstract:

In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data.

Keywords: enthalpy of formation, transition metal, binarry compunds, hafnium

Procedia PDF Downloads 483
4744 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 81
4743 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future

Authors: Gabriel Wainer

Abstract:

Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.

Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation

Procedia PDF Downloads 324
4742 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 209
4741 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain

Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio

Abstract:

Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.

Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning

Procedia PDF Downloads 178
4740 Transforming Maternity and Neonatal Services in a Middle Eastern Country

Authors: M. A. Brown, K. Hugill, D. Meredith

Abstract:

Since the establishment of midwifery, as a professional identity in its own right, in the early years of the 20th century, midwifery-led models of childbirth have prevailed in many parts of the world. However, in many locations midwives’ scope of practice remains underdeveloped or absent. In Qatar, all births take place in hospital and are under the professional jurisdiction of obstetricians, predominately supported by internationally trained nurse-midwives and obstetric nurses. The strategic vision for health services in Qatar endorsed a desire to provide women with the ‘Best Care Always’ and the introduction of midwifery was seen as a way to achieve this. In 2015 the process of recruiting postgraduate educated Clinical Midwife Specialists from international sources began. The midwives were brought together to initiate an in hospital and community service transformation plan. This plan set out a series of wide-ranging actions to transform maternity and neonatal services to make care safer and give women more health choices. Change in any organization is a complex and dynamic process. This is made even more complex when multifaceted professional and cross cultural factors are involved. This presentation reports upon the motivations and challenges that exist and the progress around introducing a multicultural midwifery model of childbirth care in the state of Qatar. The paper examines and reflects upon the drivers and unique features of childbirth in the country. Despite accomplishments, progress still needs to be made in order to fully implement sustainable changes to further improve care and ensure women and neonates get the ‘Best Care Always’. The progress within the transformation plan highlights how midwifery may coexist with competing models of maternity care to create an innovative, eclectic and culturally sensitive paradigm that can best serve women and neonatal health needs.

Keywords: culture, managing change, midwifery, neonatal, service transformation plan

Procedia PDF Downloads 150
4739 Modeling Socioeconomic and Political Dynamics of Terrorism in Pakistan

Authors: Syed Toqueer, Omer Younus

Abstract:

Terrorism, today, has emerged as a global menace with Pakistan being the most adversely affected state. Therefore, the motive behind this study is to empirically establish the linkage of terrorism with socio-economic (uneven income distribution, poverty and unemployment) and political nexuses so that a policy recommendation can be put forth to better approach this issue in Pakistan. For this purpose, the study employs two competing models, namely, the distributed lag model and OLS, so that findings of the model may be consolidated comprehensively, over the reference period of 1984-2012. The findings of both models are indicative of the fact that uneven income distribution of Pakistan is rather a contributing factor towards terrorism when measured through GDP per capita. This supports the hypothesis that immiserizing modernization theory is applicable for the state of Pakistan where the underprivileged are marginalized. Results also suggest that other socio-economic variables (poverty, unemployment and consumer confidence) can condense the brutality of terrorism once these conditions are catered to and improved. The rational of opportunity cost is at the base of this argument. Poor conditions of employment and poverty reduces the opportunity cost for individuals to be recruited by terrorist organizations as economic returns are considerably low and thus increasing the supply of volunteers and subsequently increasing the intensity of terrorism. The argument of political freedom as a means of lowering terrorism stands true. The more the people are politically repressed the more alternative and illegal means they will find to make their voice heard. Also, the argument that politically transitioning economy faces more terrorism is found applicable for Pakistan. Finally, the study contributes to an ongoing debate on which of the two set of factors are more significant with relation to terrorism by suggesting that socio-economic factors are found to be the primary causes of terrorism for Pakistan.

Keywords: terrorism, socioeconomic conditions, political freedom, distributed lag model, ordinary least square

Procedia PDF Downloads 324
4738 Crude Oil and Stocks Markets: Prices and Uncertainty Transmission Analysis

Authors: Kamel Malik Bensafta, Gervasio Semedo

Abstract:

The purpose of this paper is to investigate the relationship between oil prices and socks markets. The empirical analysis in this paper is conducted within the context of Multivariate GARCH models, using a transform version of the so-called BEKK parameterization. We show that mean and uncertainty of US market are transmitted to oil market and European market. We also identify an important transmission from WTI prices to Brent Prices.

Keywords: oil volatility, stock markets, MGARCH, transmission, structural break

Procedia PDF Downloads 526
4737 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 30
4736 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha

Abstract:

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.

Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus

Procedia PDF Downloads 285
4735 Linguistic Misinterpretation and the Dialogue of Civilizations

Authors: Oleg Redkin, Olga Bernikova

Abstract:

Globalization and migrations have made cross-cultural contacts more frequent and intensive. Sometimes, these contacts may lead to misunderstanding between partners of communication and misinterpretations of the verbal messages that some researchers tend to consider as the 'clash of civilizations'. In most cases, reasons for that may be found in cultural and linguistic differences and hence misinterpretations of intentions and behavior. The current research examines factors of verbal and non-verbal communication that should be taken into consideration in verbal and non-verbal contacts. Language is one of the most important manifestations of the cultural code, and it is often considered as one of the special features of a civilization. The Arabic language, in particular, is commonly associated with Islam and the language and the Arab-Muslim civilization. It is one of the most important markers of self-identification for more than 200 million of native speakers. Arabic is the language of the Quran and hence the symbol of religious affiliation for more than one billion Muslims around the globe. Adequate interpretation of Arabic texts requires profound knowledge of its grammar, semantics of its vocabulary. Communicating sides who belong to different cultural groups are guided by different models of behavior and hierarchy of values, besides that the vocabulary each of them uses in the dialogue may convey different semantic realities and vary in connotations. In this context direct, literal translation in most cases cannot adequately convey the original meaning of the original message. Besides that peculiarities and diversities of the extralinguistic information, such as the body language, communicative etiquette, cultural background and religious affiliations may make the dialogue even more difficult. It is very likely that the so called 'clash of civilizations' in most cases is due to misinterpretation of counterpart's means of discourse such as language, cultural codes, and models of behavior rather than lies in basic contradictions between partners of communication. In the process of communication, one has to rely on universal values rather than focus on cultural or religious peculiarities, to take into account current linguistic and extralinguistic context.

Keywords: Arabic, civilization, discourse, language, linguistic

Procedia PDF Downloads 222
4734 Building Information Modeling Implementation for Managing an Extra Large Governmental Building Renovation Project

Authors: Pornpote Nusen, Manop Kaewmoracharoen

Abstract:

In recent years, there was an observable shift in fully developed countries from constructing new buildings to modifying existing buildings. The issue was that although an effective instrument like BIM (Building Information Modeling) was well developed for constructing new buildings, it was not widely used to renovate old buildings. BIM was accepted as an effective means to overcome common managerial problems such as project delay, cost overrun, and poor quality of the project life cycle. It was recently introduced in Thailand and rarely used in a renovation project. Today, in Thailand, BIM is mostly used for creating aesthetic 3D models and quantity takeoff purposes, though it can be an effective tool to use as a project management tool in planning and scheduling. Now the governmental sector in Thailand begins to recognize the uses of using BIM to manage a construction project, but the knowledge about the BIM implementation to governmental construction projects is underdeveloped. Further studies need to be conducted to maximize its advantages for the governmental sector. An educational extra large governmental building of 17,000 square-meters was used in this research. It is currently under construction for a two-year renovation project. BIM models of the building for the exterior and interior areas were created for the whole five floors. Then 4D BIM with combination of 3D BIM plus time was created for planning and scheduling. Three focus groups had been done with executive committee, contractors, and officers of the building to discuss the possibility of usage and usefulness of BIM approach over the traditional process. Several aspects were discussed in the positive sides, especially several foreseen problems, such as the inadequate accessibility of ways, the altered ceiling levels, the impractical construction plan created through a traditional approach, and the lack of constructability information. However, for some parties, the cost of BIM implementation was a concern, though, this study believes, its uses outweigh the cost.

Keywords: building information modeling, extra large building, governmental building renovation, project management, renovation, 4D BIM

Procedia PDF Downloads 154
4733 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 51
4732 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 68
4731 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 477
4730 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 131
4729 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method

Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong

Abstract:

Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.

Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model

Procedia PDF Downloads 375
4728 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 242
4727 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique

Authors: Manar Al-Ateeq

Abstract:

The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.

Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)

Procedia PDF Downloads 179
4726 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran

Authors: Fatemeh Faramarzi, Hosein Mahjoob

Abstract:

Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.

Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6

Procedia PDF Downloads 314
4725 Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices

Authors: Fatemeh Abbasi, Sahand Daneshvar

Abstract:

Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.

Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index

Procedia PDF Downloads 195
4724 The Type II Immune Response in Acute and Chronic Pancreatitis Mediated by STAT6 in Murine

Authors: Hager Elsheikh

Abstract:

Context: Pancreatitis is a condition characterized by inflammation in the pancreas, which can lead to serious complications if untreated. Both acute and chronic pancreatitis are associated with immune reactions and fibrosis, which further damage the pancreas. The type 2 immune response, primarily driven by alternative activated macrophages (AAMs), plays a significant role in the development of fibrosis. The IL-4/STAT6 pathway is a crucial signaling pathway for the activation of M2 macrophages. Pancreatic fibrosis is induced by dysregulated inflammatory responses and can result in the autodigestion and necrosis of pancreatic acinar cells. Research Aim: The aim of this study is to investigate the impact of STAT6, a crucial molecule in the IL-4/STAT6 pathway, on the severity and development of fibrosis during acute and chronic pancreatitis. The research also aims to understand the influence of the JAK/STAT6 signaling pathway on the balance between fibrosis and regeneration in the presence of different macrophage populations. Methodology: The research utilizes murine models of acute and chronic pancreatitis induced by cerulean injection. Animal models will be employed to study the effect of STAT6 knockout on disease severity and fibrosis. Isolation of acinar cells and cell culture techniques will be used to assess the impact of different macrophage populations on wound healing and regeneration. Various techniques such as PCR, histology, immunofluorescence, and transcriptomics will be employed to analyze the tissues and cells. Findings: The research aims to provide insights into the mechanisms underlying tissue fibrosis and wound healing during acute and chronic pancreatitis. By investigating the influence of the JAK/STAT6 signaling pathway and different macrophage populations, the study aims to understand their impact on tissue fibrosis, disease severity, and pancreatic regeneration. Theoretical Importance: This research contributes to our understanding of the role of specific signaling pathways, macrophage polarization, and the type 2 immune response in pancreatitis. It provides insights into the molecular mechanisms underlying tissue fibrosis and the potential for targeted therapies. Data Collection and Analysis Procedures: Data will be collected through the use of murine models, isolation and culture of acinar cells, and various experimental techniques such as PCR, histology, immunofluorescence, and transcriptomics. Data will be analyzed using appropriate statistical methods and techniques, and the findings will be interpreted in the context of the research objectives. Conclusion: By investigating the mechanisms of tissue fibrosis and wound healing during acute and chronic pancreatitis, this research aims to enhance our understanding of the disease progression and potential therapeutic targets. The findings have theoretical importance in expanding our knowledge of pancreatic fibrosis and the role of macrophage polarization in the context of the type 2 immune response.

Keywords: immunity in chronic diseases, pancreatitis, macrophages, immune response

Procedia PDF Downloads 36