Search results for: food safety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6592

Search results for: food safety

4552 A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant

Authors: Bunindro Nameirakpam, Sonia Sougrapakam, Shannon B. Olsson, Rajashekar Yallappa

Abstract:

Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned.

Keywords: Indian traditional plant, Artemisia vulgaris, bio-pesticides, Na+/ K+- ATPase, seed germination

Procedia PDF Downloads 191
4551 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 106
4550 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa

Authors: D. Mokatsanyane, J. Jansen Van Rensburg

Abstract:

This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.

Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX

Procedia PDF Downloads 169
4549 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice

Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa

Abstract:

Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.

Keywords: biochar, paddy husk, soil conditioner, rice straw compost

Procedia PDF Downloads 349
4548 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 141
4547 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia PDF Downloads 278
4546 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 168
4545 Evaluation of the Antioxidant and Antidiabetic Potential of Fruit and Vegetable Peels

Authors: E. Chiam, E. Koh, W. Teh, M. Prabhakaran

Abstract:

Fruits and vegetables (F&V) are widely eaten for their nutritional value and associated health benefits being an immense source of bioactive compounds. However, F&V peels are often discarded, and it accounts for a higher proportion of food waste. Incorporation of F&V peels as functional ingredients can add more value to food due to the higher amounts of phytochemicals present in them. In this research, methanolic extracts of different F&V peels, namely apple, orange, kiwi, grapefruit, dragon fruit, pomelo, and pumpkin are investigated for their total phenolic content (TPC) by Folin-Ciocalteau (FC) assay and the antioxidant capacity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdenum assay using UV-Vis spectroscopy. Evaluation of the α-glucosidase inhibitory assay was carried out during this study to determine the antidiabetic potential of F&V peels. Results of our study showed that grapefruit peels contained the highest total phenolic content of 477.81 ± 0.01 mg gallic acid equivalent per gram dry weight of the sample, and kiwi peel had the highest antioxidant capacity (90.51 ± 0.10 % inhibition of DPPH radical) among the different F&V peels studied. Fruit peels exhibited high α-glucosidase inhibitory activity. Comparing fruit peels with vegetable peels, it was found that fruit peels had high total phenolic content, antioxidant capacity and anti-diabetic potential compared to vegetable peels.

Keywords: polyphenolics, fruit peels, antioxidant, antidiabetic

Procedia PDF Downloads 136
4544 Multi-Objective Optimization of Intersections

Authors: Xiang Li, Jian-Qiao Sun

Abstract:

As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.

Keywords: cellular automata, intersection, multi-objective optimization, traffic system

Procedia PDF Downloads 578
4543 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare

Procedia PDF Downloads 145
4542 Participatory Approach: A Tool for Improving Food Security and Empowering a Local Community in Chitima, Mozambique

Authors: Matias Hargreaves, Martin Del Valle, Diego Rodriguez, Riveros Jose Luis

Abstract:

Trough years, all kind of social development projects have tried to solve social problems such as hunger, poverty, malnutrition, food insecurity, among others, with poor success. Both private and state initiatives have invested resources in several countries and communities. Nevertheless, most of these initiatives are scientific or external developers-centered, with a lack of local participation. This compromises the sustainability of any intervention and also leads to a poor empowerment of local community. The participatory approach aims to rescue and enhance the local knowledge since it recognizes that this kind of problems are better known by native actors. The objective of the study was to describe the role played by the community empowerment on food security improvement in the NGO “O Viveiro” (15°43'37.77"S; 32°46'27.53"E) and Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. A center for training in goat livestock and orchard was build. A community orchard was co-constructed between foreign technicians and local actors. The prototype was installed in February, 2016 by the technician team and local community with 16 m2 as a nursery garden. Two orchard workshops were conducted in order to design a sustainable productive model which mixes both local and technological approaches. Two goat meat workshops were conducted in order to describe local methods and train the community to conduce their own techniques with high sanitary and productive standards. Technician team stayed in Mozambique until May, 2016. The quorum for the orchard workshops was 20 and 14 persons respectively, which represents 100% and 70%of the total requested quorum (20). For the goat meat workshops were 4 and 5 persons, which representa80% and 100% of the total requested quorum (5). Until August, 2016, the orchard is 3.219 m2 and it grows several vegetables as beans, chili pepper, garlic, onion, tomatoes, lettuce, sweet potato, yuca potato, cabbage, eggplant, papaya trees, mango, and cassava. The process of increasing in size and diversification of vegetables grown was led entirely by the local community. In connection with this, the local community started to harvest and began to sell the vegetable products at the local market. At the meat goat workshops, local participants rescued a local knowledge by describing and practicing a traditional way to process goat meat by drying it outdoors and then doing a smoked treatment. This information might contribute to describe the level of empowerment of this community, and thus give evidence of acceptance of foreign intervention for improving their own proceedings and traditions.

Keywords: children malnutrition, food security, Local community, participatory approach

Procedia PDF Downloads 268
4541 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems

Authors: Gaurav Kumar Sinha

Abstract:

The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.

Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity

Procedia PDF Downloads 35
4540 Co-Existence of Thai Muslim People and Other in an Ancient Community Located in the Heart of Bangkok: The Case Study of Petchaburi 7 Community

Authors: Saowapa Phaithayawat

Abstract:

The objectives of the study are the following: 1) To study the way of life in terms of one hundred years co-existence of the Muslim and local community in this area 2) To analyze factors affect to this community with happy co-existence. The study requires quantitative research to study a history together with the study of humanity. The result of this study showed that the area of Petchburi 7 community is an ancient area which has owned by the Muslim for almost 100 years. There is a sanctuary as the center of unity. Later Bangkok becomes more developed and provides more infrastructures like the motorway and other transportation: however, the owners of lands in this community still keep their lands and build many buildings to run the business. With this purpose, there are many non-Muslim people come to live here with co-existence. Not only do they convenient to work but also easy to transport by sky train. There are factors that make them live harmonious as following: 1) All Muslims in this area are strict to follow their rules and allocate their community for business. 2) All people, who come and live here, are middle-aged and working men and women. They rent rooms closed to their work. 3) There are Muslim food and desserts, especially Roti, the popular fried flour, and local Chachak, tea originated from the south of Thailand. All these food and deserts are famous for working men and women to home and join after work 4) All Muslim in this area are independent to lead their own lives although a society changes rapidly.

Keywords: co-existence, Muslims, other group of people, the ancient community, social sciences

Procedia PDF Downloads 336
4539 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings

Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria

Abstract:

In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.

Keywords: e-health for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device

Procedia PDF Downloads 191
4538 Analysis of the Fire Hazard Posed by Petrol Stations in Stellenbosch and the Extent to Which Planning Acknowledges Risk

Authors: Kwanele Qonono

Abstract:

Despite the significance and economic benefits of petrol stations in South Africa, these still pose a huge risk of fire and explosion threatening public safety. This research paper examines the extent to which land-use planning in Stellenbosch, South Africa, considers the fire risk posed by petrol stations and the implications for public safety as well as preparedness for large fires or explosions. To achieve this, the research identified the land-use types around petrol stations in Stellenbosch and determined the extent to which their locations comply with the local, national, and international land-use planning regulations. A mixed research method consisting of the collection and analysis of geospatial data and qualitative data was an applied method, where petrol stations within a six-kilometre radius of Stellenbosch’s town centre were utilised as study sites. The research examined the risk of fires/explosions at these petrol stations. The research investigated Stellenbosch Municipality’s institutional preparedness to respond in the event of a fire/explosion at these petrol stations. The research observed that siting of petrol stations does not comply with local, national, and international good practices, thus exposing the surrounding developments to fires and explosions. Land-use planning practice does not consider hazards created by petrol stations. Despite the potential for major fires at petrol stations, Stellenbosch Municipality’s level of preparedness to respond to petrol station fires appears low due to the prioritisation of more frequent events.

Keywords: petrol stations, technological hazard, drr, land-use planning, risk analysis

Procedia PDF Downloads 101
4537 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 175
4536 Biosensor System for Escherichia coli and Staphylococcus aureus Detection in Traditional Ice Cream

Authors: Raana Babadi Fathipour

Abstract:

Ice cream is a nutritious dairy product that, given its constituent materials and high nutritional value, is a suitable growth medium for the growth of various food microorganisms. The contamination of this product with pathogenic microorganisms may cause food poisoning and infections, and so could be harmful to human health. The foremost critical pathogenic microscopic organisms of ice cream incorporate Escherichia coli, Staphylococcus aureus, Bacillus cereus, Enterobacteriaceae, coliforms, Listeria monocytogenes and Enterococcus. Biosensor technology, albeit a recent addition to the dairy industry, has proven its worth in other fields, such as medical devices. Through numerous studies, the advantages of employing biosensors have consistently emerged. These incredible tools present expeditious and straightforward means while specifically targeting analytes. Thus, they bring forth unparalleled solutions that bolster ongoing advancements within dairy products and processes. This review delves into the latest developments in the realm of biosensors and evaluates the diverse techniques of bio-recognition and transduction in terms of their benefits, drawbacks, and relevance to traditional ice cream. Furthermore, the obstacles that impede the progress of these approaches in meeting the growing need for swift and real-time quality control of milk products, particularly ice cream, are also expounded upon.

Keywords: traditional ice cream, Escherichia coli, Staphylococcus aureus, biosensors

Procedia PDF Downloads 74
4535 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 150
4534 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 136
4533 Influence of Engaging Female Caregivers in Households with Adolescent Girls on Adopting Equitable Family Eating Practices: A Quasi-Experimental Study

Authors: Hanna Gulema, Meaza Demissie, Alemayehu Worku, Tesfaye Assebe Yadeta, Yemane Berhane

Abstract:

Background: In patriarchal societies, female caregivers decide on food allocation within a family based on prevailing gender and age norms, which may lead to inequality that does not favor young adolescent girls. This study evaluated the effect of a community-based social norm intervention involving female caregivers in West Hararghe, Ethiopia. The intervention was engaging female caregivers along with other adult influential community members to deliberate and act on food allocation social norms in a process referred to as Social Analysis and Action (SAA). Method: We used data from a large quasi-experimental study to compare family eating practices between those who participated in the Social Analyses and Action intervention and those who did not. The respondents were female caregivers in households with young adolescent girls (ages 13 and 14 years). The study’s outcome was the practice of family eating together from the same dish. The difference in difference (DID) analysis with the Mixed effect logistic regression model was used to examine the effect of the intervention. Result: The results showed improved family eating practices in both groups, but the improvement was greater in the intervention group. The DID analysis showed an 11.99 percentage points greater improvement in the intervention arm than in the control arm. The mixed-effect regression produced an adjusted odds ratio of 2.08 (95% CI [1.06–4.09]) after controlling selected covariates, p-value 0.033. Conclusions: The involvement of influential adult community members significantly improves the family practice of eating together in households where adolescent girls are present in our study. The intervention has great potential to minimize household food allocation inequalities and thus improve the nutritional status of young adolescents. Further studies are necessary to evaluate the effectiveness of the intervention in different social norm contexts to formulate policy and guidelines for scale-up.

Keywords: family eating practice, social norm intervention, adolescence girls, caregiver

Procedia PDF Downloads 66
4532 Urban Search, Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result, there is always a risk that they could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of the structural damage that may be countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to judge better and quantify the risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk so that they do not become victims.

Keywords: damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field

Procedia PDF Downloads 391
4531 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 419
4530 Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding

Authors: Lohendy Munoz-Vargas, Stephen O. Opiyo, Rose Digianantonio, Michele L. Williams, Asela Wijeratne, Gregory Habing

Abstract:

Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.

Keywords: dairy cattle, microbiome, periparturient, Salmonella

Procedia PDF Downloads 168
4529 Basal Cell Carcinoma Excision Intraoperative Frozen Section for Tumor Clearance and Reconstructive Surgery: A Prospective Open Label Interventional Study

Authors: Moizza Tahir, Uzma Bashir, Aisha Akhtar, Zainab Ansari, Sameen Ansari, Muhammad Ali Tahir

Abstract:

Cancer burden has globally increased. Among cutaneous cancers basal cell carcinoma constitute vast majority of skin cancer. There is need for appropriate diagnostic, therapeutic and prognostic significance evaluation for skin cancers Present study report intraoperative frozen section (FS) histopathological clearance for excision of BCC in a tertiary care center and find the frequency of involvement of surgical margin with reference to anatomical site, with size and surgical technique. It was prospective open label interventional study conducted at Dermatology department of tertiary care hospital Rawalpindi Pakistan in lais on with histopathology department from January 2023 to April 2024. Total of thirty-six (n = 36) patients between age 45-80 years with basal cell carcinoma of 10-20mm on face were included following inclusion exclusion criteria by purposive sampling technique. Informed consent was taken. Surgical excision was performed and intraoperative frozen section histopathology clearance of tumor margin was taken from histopathologist on telephone. Surgical reconstruction was done. Final Histopathology report was reexamined on day 10th for margin and depth clearance. Descriptive statistics were calculated for age, gender, sun exposure, reconstructive technique, anatomical site, and tumor free margin report on frozen section analysis. Chi square test was employed for statistical significance of involvement of surgical margin with reference to anatomical site, size and decision on reconstructive surgical technique, p value of <0.05 was considered significant. Total of 36 patients of BCC were enrolled, males 12 (33.3%) and females were 24 (66.6%). Age ranged from 45 year to 80 year mean of 58.36 ±SD7.8. Size of BCC ranged from 10mm to 35mm mean of 25mm ±SD 0.63. Morphology was nodular 18 (50%), superficial spreading 11(30.6%), morphoeic 1 (2.8%) and ulcerative in 6(16.7%) cases. Intraoperative frozen section for histopathological margin clearance with 2-3 mm safety margin and surgical technique has p-value0.51, for anatomical site p value 0.24 and size p-0.84. Intraoperative frozen section (FS) histopathological clearance for BCC face with 2-3mm safety margin with reference to reconstructive technique, anatomical site and size of BCC were insignificant.

Keywords: basal cell carcinoma, tumor free amrgin, basal cell carcinoma and frozen section, safety margin

Procedia PDF Downloads 46
4528 Analysis of the Unmanned Aerial Vehicles’ Incidents and Accidents: The Role of Human Factors

Authors: Jacob J. Shila, Xiaoyu O. Wu

Abstract:

As the applications of unmanned aerial vehicles (UAV) continue to increase across the world, it is critical to understand the factors that contribute to incidents and accidents associated with these systems. Given the variety of daily applications that could utilize the operations of the UAV (e.g., medical, security operations, construction activities, landscape activities), the main discussion has been how to safely incorporate the UAV into the national airspace system. The types of UAV incidents being reported range from near sightings by other pilots to actual collisions with aircraft or UAV. These incidents have the potential to impact the rest of aviation operations in a variety of ways, including human lives, liability costs, and delay costs. One of the largest causes of these incidents cited is the human factor; other causes cited include maintenance, aircraft, and others. This work investigates the key human factors associated with UAV incidents. To that end, the data related to UAV incidents that have occurred in the United States is both reviewed and analyzed to identify key human factors related to UAV incidents. The data utilized in this work is gathered from the Federal Aviation Administration (FAA) drone database. This study adopts the human factor analysis and classification system (HFACS) to identify key human factors that have contributed to some of the UAV failures to date. The uniqueness of this work is the incorporation of UAV incident data from a variety of applications and not just military data. In addition, identifying the specific human factors is crucial towards developing safety operational models and human factor guidelines for the UAV. The findings of these common human factors are also compared to similar studies in other countries to determine whether these factors are common internationally.

Keywords: human factors, incidents and accidents, safety, UAS, UAV

Procedia PDF Downloads 236
4527 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants

Authors: Bernabeo R. Alberto

Abstract:

Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.

Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle

Procedia PDF Downloads 11
4526 Effect of Lactone Glycoside on Feeding Deterrence and Nutritive Physiology of Tobacco Caterpillar Spodoptera litura Fabricius (Noctuidae: Lepidoptera)

Authors: Selvamuthukumaran Thirunavukkarasu, Arivudainambi Sundararajan

Abstract:

The plant active molecules with their known mode of action are important leads to the development of newer insecticides. Lactone glycoside was identified earlier as the active principle in Cleistanthus collinus (Roxb.) Benth. (Fam: Euphorbiaceae). It possessed feeding deterrent, insecticidal and insect growth regulatory actions at varying concentrations. Deducing its mode of action opens a possibility of its further development. A no-choice leaf disc bioassay was carried out with lactone glycoside at different doses for different instars and Deterrence Indices were worked out. Using regression analysis concentrations imparting 10, 30 and 50 per cent deterrence (DI10, DI30 & DI50) were worked out. At these doses, effect on nutritional indices like Relative Consumption and Growth Rates (RCR & RGR), Efficiencies of Conversion of Ingested and Digested food (ECI & ECD) and Approximate Digestibility (AD) were worked out. The Relative Consumption and Growth Rate of control and lactone glycoside larva were compared by regression analysis. Regression analysis of deterrence indices revealed that the concentrations needed for imparting 50 per cent deterrence was 60.66, 68.47 and 71.10 ppm for third, fourth and fifth instars respectively. Relative consumption rate (RCR) and relative growth rate (RGR) were reduced. This confirmed the antifeedant action of the fraction. Approximate digestibility (AD) was found greater in treatments indicating reduced faeces because of poor digestibility and retention of food in the gut. Efficiency of conversion of both ingested and digested (ECI and ECD) food was also found to be greatly reduced. This indicated presence of toxic action. This was proved by comparing growth efficiencies of control and lactone glycoside treated larvae. Lactone glycoside was found to possess both feeding deterrent and toxic modes of action. Studies on molecular targets based on this preliminary site of action lead to new insecticide development.

Keywords: Spodoptera litura Fabricius, Cleistanthus collinus (Roxb.) Benth, feeding deterrence, mode of action

Procedia PDF Downloads 151
4525 Resilient Security System with Toll Free Call Services: Case Study of Adama City

Authors: Shanko Chura Aredo, Hailu Jeldie Wodajo, Muktar Jeylan, Kedir Ilka, Abdulnasir Husein

Abstract:

Toll-free numbers are calling numbers that have unique three or four digit numbers and that don’t require payment from phone lines in order to be called. With the help of these numbers, callers can connect with nearby organizations and/or people without incurring far-reaching fees. Calls to assistance centers are especially popular from toll-free phones. In the past, toll-free services have offered prospective clients and other parties a simple and cost-free means of getting in touch with enterprises. Nevertheless, unless they have an ”unlimited calling” plan, wireless subscribers will be billed for the airtime minutes used during a toll-free call. In Adama, the second largest city in Ethiopia, a call center has been installed as part of smart security system and serving since January 2023 for collection of complaints from different community levels. The call center is situated at the mayor office and has 11 active workers, 4 of these working the night time and the remaining during day time. The information reported in the form of complaints from individuals and groups are illegal constructions, illegal trade, income concealment or hiding, giving and receiving bribe, informing new faces of suspected enemies and exposing individual or group conflicts. This technology has been found to bring a significant outcome in minimizing illegal acts, public safety threats and service delivery problems.

Keywords: smart, safety, crime, call center, security

Procedia PDF Downloads 51
4524 NENU2PHAR: PHA-Based Materials from Micro-Algae for High-Volume Consumer Products

Authors: Enrique Moliner, Alba Lafarga, Isaac Herraiz, Evelina Castellana, Mihaela Mirea

Abstract:

NENU2PHAR (GA 887474) is an EU-funded project aimed at the development of polyhydroxyalkanoates (PHAs) from micro-algae. These biobased and biodegradable polymers are being tested and validated in different high-volume market applications including food packaging, cosmetic packaging, 3D printing filaments, agro-textiles and medical devices, counting on the support of key players like Danone, BEL Group, Sofradim or IFG. At the moment the project has achieved to produce PHAs from micro-algae with a cumulated yield around 17%, i.e. 1 kg PHAs produced from 5.8 kg micro-algae biomass, which in turn capture 11 kg CO₂ for growing up. These algae-based plastics can therefore offer the same environmental benefits than current bio-based plastics (reduction of greenhouse gas emissions and fossil resource depletion), using a 3rd generation biomass feedstock that avoids the competition with food and the environmental impacts of agricultural practices. The project is also dealing with other sustainability aspects like the ecodesign and life cycle assessment of the plastic products targeted, considering not only the use of the biobased plastics but also many other ecodesign strategies. This paper will present the main progresses and results achieved to date in the project.

Keywords: NENU2PHAR, Polyhydroxyalkanoates, micro-algae, biopolymer, ecodesign, life cycle assessment

Procedia PDF Downloads 86
4523 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity

Authors: Muhammad Waqar Ashraf

Abstract:

The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.

Keywords: magnetic treatment, saline water, hardness of water, removal of salinity

Procedia PDF Downloads 489