Search results for: conventional techniques
7862 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics
Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih
Abstract:
Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability
Procedia PDF Downloads 1587861 SCR-Based Advanced ESD Protection Device for Low Voltage Application
Authors: Bo Bae Song, Byung Seok Lee, Hyun young Kim, Chung Kwang Lee, Yong Seo Koo
Abstract:
This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4).Keywords: ESD, SCR, holding voltage, latch-up
Procedia PDF Downloads 5757860 Comparative Study on Sensory Profiles of Liquor from Different Dried Cocoa Beans
Authors: Khairul Bariah Sulaiman, Tajul Aris Yang
Abstract:
Malaysian dried cocoa beans have been reported to have low quality flavour and are often sold at discounted prices. Various efforts have been made to improve the Malaysian beans quality. Among these efforts is introduction of the shallow box fermentation technique and pulp preconditioned through pods storage. However, after nearly four decades of the effort was done, Malaysian cocoa farmers still received lower prices for their beans. So, this study was carried out in order to assess the flavour quality of dried cocoa beans produced by shallow box fermentation techniques, combination of shallow box fermentation with pods storage and compared to dried cocoa beans obtained from Ghana. A total of eight samples of dried cocoa was used in this study, which one of the samples was Ghanaian beans (coded with no.8), while the rest were Malaysian cocoa beans with different post-harvest processing (coded with no. 1, 2, 3, 4, 5, 6 and 7). Cocoa liquor was prepared from all samples in the prescribed techniques and sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) Method with 0-10 scale by Malaysian Cocoa Board trained panelist. Sensory evaluation showed that cocoa attributes for all cocoa liquors ranging from 3.5 to 5.3, whereas bitterness was ranging from 3.4 to 4.6 and astringent attribute ranging from 3.9 to 5.5, respectively. Meanwhile, all cocoa liquors were having acid or sourness attribute ranging from 1.6 to 3.6, respectively. In general cocoa liquor prepared from sample coded no 4 has almost similar flavour profile and no significantly different at p < 0.05 with Ghana, in term of most flavour attributes as compared to the other six samples.Keywords: cocoa beans, flavour, fermentation, shallow box, pods storage
Procedia PDF Downloads 3947859 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 387858 Development and Evaluation of Removable Shear Link with Perforated Web
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed.Keywords: eccentrically braced frame, removable shear link, perforated web, non-linear FE analysis
Procedia PDF Downloads 3637857 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)
Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam
Abstract:
Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa
Procedia PDF Downloads 3627856 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering
Procedia PDF Downloads 1967855 Flipped Learning in Interpreter Training: Technologies, Activities and Student Perceptions
Authors: Dohun Kim
Abstract:
Technological innovations have stimulated flipped learning in many disciplines, including language teaching. It is a specific type of blended learning, which combines onsite (i.e. face-to-face) with online experiences to produce effective, efficient and flexible learning. Flipped learning literally ‘flips’ conventional teaching and learning activities upside down: it leverages technologies to deliver a lecture and direct instruction—other asynchronous activities as well—outside the classroom to reserve onsite time for interaction and activities in the upper cognitive realms: applying, analysing, evaluating and creating. Unlike the conventional flipped approaches, which focused on video lecture, followed by face-to-face or on-site session, new innovative methods incorporate various means and structures to serve the needs of different academic disciplines and classrooms. In the light of such innovations, this study adopted ‘student-engaged’ approaches to interpreter training and contrasts them with traditional classrooms. To this end, students were also encouraged to engage in asynchronous activities online, and innovative technologies, such as Telepresence, were employed. Based on the class implementation, a thorough examination was conducted to examine how we can structure and implement flipped classrooms for language and interpreting training while actively engaging learners. This study adopted a quantitative research method, while complementing it with a qualitative one. The key findings suggest that the significance of the instructor’s role does not dwindle, but his/her role changes to a moderator and a facilitator. Second, we can apply flipped learning to both theory- and practice-oriented modules. Third, students’ integration into the community of inquiry is of significant importance to foster active and higher-order learning. Fourth, cognitive presence and competence can be enhanced through strengthened and integrated teaching and social presences. Well-orchestrated teaching presence stimulates students to find out the problems and voices the convergences and divergences, while fluid social presence facilitates the exchanges of knowledge and the adjustment of solutions, which eventually contributes to consolidating cognitive presence—a key ingredient that enables the application and testing of the solutions and reflection thereon.Keywords: blended learning, Community of Inquiry, flipped learning, interpreter training, student-centred learning
Procedia PDF Downloads 1967854 Direct Torque Control of Induction Motor Employing Differential Evolution Algorithm
Authors: T. Vamsee Kiran, A. Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this differential evolution (DE) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion.The DE based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: differential evolution, direct torque control, PI controller
Procedia PDF Downloads 4327853 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures
Authors: Kholood Baron
Abstract:
Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose
Procedia PDF Downloads 1137852 Cut-Out Animation as an Technic and Development inside History Process
Authors: Armagan Gokcearslan
Abstract:
The art of animation has developed very rapidly from the aspects of script, sound and music, motion, character design, techniques being used and technological tools being developed since the first years until today. Technical variety attracts a particular attention in the art of animation. Being perceived as a kind of illusion in the beginning; animations commonly used the Flash Sketch technique. Animations artists using the Flash Sketch technique created scenes by drawing them on a blackboard with chalk. The Flash Sketch technique was used by primary animation artists like Emile Cohl, Winsor McCay ande Blackton. And then tools like Magical Lantern, Thaumatrope, Phenakisticope, and Zeotrap were developed and started to be used intensely in the first years of the art of animation. Today, on the other hand, the art of animation is affected by developments in the computer technology. It is possible to create three-dimensional and two-dimensional animations with the help of various computer software. Cut-out technique is among the important techniques being used in the art of animation. Cut-out animation technique is based on the art of paper cutting. Examining cut-out animations; it is observed that they technically resemble the art of paper cutting. The art of paper cutting has a rooted history. It is possible to see the oldest samples of paper cutting in the People’s Republic of China in the period after the 2. century B.C. when the Chinese invented paper. The most popular artist using the cut-out animation technique is the German artist Lotte Reiniger. This study titled “Cut-out Animation as a Technic and Development Inside History Process” will embrace the art of paper cutting, the relationship between the art of paper cutting and cut-out animation, its development within the historical process, animation artists producing artworks in this field, important cut-out animations, and their technical properties.Keywords: cut-out, paper art, animation, technic
Procedia PDF Downloads 2767851 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1187850 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)
Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor
Abstract:
There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms
Procedia PDF Downloads 3027849 Management of Urban Watering: A Study of Appliance of Technologies and Legislation in Goiania, Brazil
Authors: Vinicius Marzall, Jussanã Milograna
Abstract:
The urban drainwatering remains a major challenge for most of the Brazilian cities. Not so different of the most part, Goiania, a state capital located in Midwest of the country has few legislations about the subject matter and only one registered solution of compensative techniques for drainwater. This paper clam to show some solutions which are adopted in other Brazilian cities with consolidated legislation, suggesting technics about detention tanks in a building sit. This study analyzed and compared the legislation of Curitiba, Porto Alegre e Sao Paulo, with the actual legislation and politics of Goiania. After this, were created models with adopted data for dimensioning the size of detention tanks using the envelope curve method considering synthetic series for intense precipitations and building sits between 250 m² and 600 m², with an impermeabilization tax of 50%. The results showed great differences between the legislation of Goiania and the documentation of the others cities analyzed, like the number of techniques for drainwatering applied to the reality of the cities, educational actions to awareness the population about care the water courses and political management by having a specified funds for drainwater subjects, for example. Besides, the use of detention tank showed itself practicable, have seen that the occupation of the tank is minor than 3% of the building sit, whatever the size of the terrain, granting the exit flow to pre-occupational taxes in extreme rainfall events. Also, was developed a linear equation to measure the detention tank based in the size of the building sit in Goiania, making simpler the calculation and implementation for non-specialized people.Keywords: clean technology, legislation, rainwater management, urban drainwater
Procedia PDF Downloads 1597848 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 1347847 The Used of Ceramic Stove Cover and It’s Gap to the Efficiency of Water Boiling System
Authors: Agung Sugeng Widodo
Abstract:
Water boiling system (WBS) using conventional gas stove (CGS) is relatively inefficient unless its mechanism being considered. In this study, an addition of ceramic stove cover (CSC) to a CGS and the gap between CSC and pan have been assessed. Parameters as energy produced by fuel, CSC temperature and water temperature were used to analyze the performance of a CGS. The gaps were varied by 1 – 7 mm in a step of 1 mm. The results showed that a CSC able to increase the performance of a CGS significantly. In certain fuel rate of 0.75 l/m, the efficiency of a CGS obtained in a gap of 4 mm. The best efficiency obtained in this study was 46.4 % due to the optimum condition that achieved simultaneously in convection and radiation heat transfer processes of the heating system. CSC also indicated a good characteristic for covering heat release at the initially of WBS.Keywords: WBS, CSC, CGS, efficiency, gap
Procedia PDF Downloads 2687846 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings
Authors: Anoush Saadatmehr
Abstract:
Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure
Procedia PDF Downloads 1647845 Pricing Strategy in Marketing: Balancing Value and Profitability
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Pricing strategy is a vital component in achieving the balance between customer value and business profitability. The aim of this study is to provide insights into the factors, techniques, and approaches involved in pricing decisions. The study utilizes a descriptive approach to discuss various aspects of pricing strategy in marketing, drawing on concepts from market research, consumer psychology, competitive analysis, and adaptability. This approach presents a comprehensive view of pricing decisions. The result of this exploration is a framework that highlights key factors influencing pricing decisions. The study examines how factors such as market positioning, product differentiation, and brand image shape pricing strategies. Additionally, it emphasizes the role of consumer psychology in understanding price elasticity, perceived value, and price-quality associations that influence consumer behavior. Various pricing techniques, including charm pricing, prestige pricing, and bundle pricing, are mentioned as methods to enhance sales by influencing consumer perceptions. The study also underscores the importance of adaptability in responding to market dynamics through regular price monitoring, dynamic pricing, and promotional strategies. It recognizes the role of digital platforms in enabling personalized pricing and dynamic pricing models. In conclusion, the study emphasizes that effective pricing strategies strike a balance between customer value and business profitability, ultimately driving sales, enhancing brand perception, and fostering lasting customer relationships.Keywords: business, customer benefits, marketing, pricing
Procedia PDF Downloads 797844 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 1177843 Analysis of Ionospheric Variations over Japan during 23rd Solar Cycle Using Wavelet Techniques
Authors: C. S. Seema, P. R. Prince
Abstract:
The characterization of spatio-temporal inhomogeneities occurring in the ionospheric F₂ layer is remarkable since these variations are direct consequences of electrodynamical coupling between magnetosphere and solar events. The temporal and spatial variations of the F₂ layer, which occur with a period of several days or even years, mainly owe to geomagnetic and meteorological activities. The hourly F₂ layer critical frequency (foF2) over 23rd solar cycle (1996-2008) of three ionosonde stations (Wakkanai, Kokunbunji, and Okinawa) in northern hemisphere, which falls within same longitudinal span, is analyzed using continuous wavelet techniques. Morlet wavelet is used to transform continuous time series data of foF2 to a two dimensional time-frequency space, quantifying the time evolution of the oscillatory modes. The presence of significant time patterns (periodicities) at a particular time period and the time location of each periodicity are detected from the two-dimensional representation of the wavelet power, in the plane of scale and period of the time series. The mean strength of each periodicity over the entire period of analysis is studied using global wavelet spectrum. The quasi biennial, annual, semiannual, 27 day, diurnal and 12 hour variations of foF2 are clearly evident in the wavelet power spectra in all the three stations. Critical frequency oscillations with multi-day periods (2-3 days and 9 days in the low latitude station, 6-7 days in all stations and 15 days in mid-high latitude station) are also superimposed over large time scaled variations.Keywords: continuous wavelet analysis, critical frequency, ionosphere, solar cycle
Procedia PDF Downloads 2207842 An Efficient Strategy for Relay Selection in Multi-Hop Communication
Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).Keywords: multi-hop, OFDM, relay, relaying selection
Procedia PDF Downloads 4467841 Modular 3D Environmental Development for Augmented Reality
Authors: Kevin William Taylor
Abstract:
This work used industry-standard practices and technologies as a foundation to explore current and future advancements in modularity for 3D environmental production. Covering environmental generation, and AI-assisted generation, this study investigated how these areas will shape the industries goal to achieve full immersion within augmented reality environments. This study will explore modular environmental construction techniques utilized in large scale 3D productions. This will include the reasoning behind this approach to production, the principles in the successful development, potential pitfalls, and different methodologies for successful implementation of practice in commercial and proprietary interactive engines. A focus will be on the role of the 3D artists in the future of environmental development, requiring adaptability to new approaches, as the field evolves in response to tandem technological advancements. Industry findings and projections theorize how these factors will impact the widespread utilization of augmented reality in daily life. This will continue to inform the direction of technology towards expansive interactive environments. It will change the tools and techniques utilized in the development of environments for game, film, and VFX. This study concludes that this technology will be the cornerstone for the creation of AI-driven AR that is able to fully theme our world, change how we see and engage with one another. This will impact the concept of a virtual self-identity that will be as prevalent as real-world identity. While this progression scares or even threaten some, it is safe to say that we are seeing the beginnings of a technological revolution that will surpass the impact that the smartphone had on modern society.Keywords: virtual reality, augmented reality, training, 3D environments
Procedia PDF Downloads 1237840 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques
Authors: S. Visetpotjanakit, C. Khrautongkieo
Abstract:
Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.Keywords: international atomic energy agency, proficiency test, radiation monitoring, seawater
Procedia PDF Downloads 1727839 Effects of Auxetic Antibacterial Zwitterion Carboxylate and Sulfate Copolymer Hydrogels for Diabetic Wound Healing Application
Authors: Udayakumar Vee, Franck Quero
Abstract:
Zwitterionic polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications.Keywords: auxetic, zwitterion, carboxylate, sulfonate, polymer, wound healing
Procedia PDF Downloads 1407838 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 1377837 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique
Authors: Yeliz Karaca, Rana Karabudak
Abstract:
Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques
Procedia PDF Downloads 1697836 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3977835 Antibacterial Zwitterion Carboxylate and Sulfonate Copolymer Auxetic Hydrogels for Diabetic Wound Healing Application
Authors: Udayakumar Veerabagu, Franck Quero
Abstract:
Zwitterion carboxylate and sulfonate polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications.Keywords: auxetic, zwitterion, carboxylate, sulfonate, polymer, wound healing
Procedia PDF Downloads 1567834 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning
Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira
Abstract:
Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.Keywords: additive manufacturing, porcelain, robocasting, R3D
Procedia PDF Downloads 1637833 Process Monitoring Based on Parameterless Self-Organizing Map
Authors: Young Jae Choung, Seoung Bum Kim
Abstract:
Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property
Procedia PDF Downloads 275