Search results for: aqeous extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2107

Search results for: aqeous extract

67 Role of HIV-Support Groups in Mitigating Adverse Sexual Health Outcomes among HIV Positive Adolescents in Uganda

Authors: Lilian Nantume Wampande

Abstract:

Group-based strategies in the delivery of HIV care have opened up new avenues not only for meaningful participation for HIV positive people but also platforms for deconstruction and reconstruction of knowledge about living with the virus. Yet the contributions of such strategies among patients who live in high risk areas are still not explored. This case study research assessed the impact of HIV support networks on sexual health outcomes of HIV positive out-of-school adolescents residing in fishing islands of Kalangala in Uganda. The study population was out-of-school adolescents living with HIV and their sexual partners (n=269), members of their households (n=80) and their health service providers (n=15). Data were collected via structured interviews, observations and focus group discussions between August 2016 and March 2017. Data was then analyzed inductively to extract key themes related to the approaches and outcomes of the groups’ activities. The study findings indicate that support groups unite HIV positive adolescents in a bid for social renegotiation to achieve change but individual constraints surpass the groups’ intentions. Some adolescents for example reported increased fear which led to failure to cope, sexual violence, self-harm and denial of status as a result of the high expectations placed on them as members of the support groups. Further investigations around this phenomenon show that HIV networks play a monotonous role as information sources for HIV positive out-of-school adolescents which limit their creativity to seek information elsewhere. Results still indicate that HIV adolescent groups recognize the complexity of long-term treatment and stay in care leading to improved immunity for the majority yet; there is still scattered evidence about how effective they are among adolescents at different phases in the disease trajectory. Nevertheless, the primary focus of developing adolescent self-efficacy and coping skills significantly address a range of disclosure difficulties and supports autonomy. Moreover, the peer techniques utilized in addition to the almost homogeneous group characteristics accelerates positive confidence, hope and belongingness. Adolescent HIV-support groups therefore have the capacity to both improve and/or worsen sexual health outcomes for a young adolescent who is out-of-school. Communication interventions that seek to increase awareness about ‘self’ should therefore be emphasized more than just fostering collective action. Such interventions should be sensitive to context and gender. In addition, facilitative support supervision done by close and trusted health care providers, most preferably Village Health Teams (who are often community elected volunteers) would help to follow-up, mentor, encourage and advise this young adolescent in matters involving sexuality and health outcomes. HIV/AIDS prevention programs have extended their efforts beyond individual focus to those that foster collective action, but programs should rekindle interpersonal level strategies to address the complexity of individual behavior.

Keywords: adolescent, HIV, support groups, Uganda

Procedia PDF Downloads 144
66 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 135
65 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts

Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.

Abstract:

The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.

Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation

Procedia PDF Downloads 150
64 Phytochemical and Vitamin Composition of Wild Edible Plants Consumed in South West Ethiopia

Authors: Abebe Yimer, Sirawdink Fikereyesus Forsido, Getachew Addis, Abebe Ayelign

Abstract:

Background: Oxidative stress has been an important health problem as itinduceschronic diseases such as cancer, cardiovascular, diabetics, and neurodegenerative disease. Plant source natural antioxidant has gained attention as synthetic antioxidant negatively impact human health. Wild edible plants arecheap source of dietary-medicine in mainly rural communityin south-west Ethiopia and elsewhere the country. Thus, the study aimed to determine total pheneol,flavoinoids, antioxidant, vitamin C, and beta-carotene content from wild edible plants Solanum nigrum L., Vigna membranacea A. Rich, Dioscorea praehensilis Benth., Trilepisium madagascariense D.C.andCleome gynandra L. Methods: Methanol was used to extract samples of oven-dried edible plants. Total phenolic compound (TPC) was determined using a Folin Ciocalteu method, whereas total flavonoid content (TFC) was determined using the Aluminium chloride colorimetric method. By using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests, antioxidant activities were evaluated in vitro. Additionally, beta-carotene was assessed using a spectrophotometric technique, whilst vitamin C was determined using a titration approach. Results: Total flavonoid contentranged from 0.85±0.03 to 11.25±0.01 mg CE/g in D. praehensilis Benth. tuber and C. gynandra L, respectively. Total phenolic compounds varied from 0.25±0.06 GAE/g in D. praehensilis Benth tuber to 35.73±2.52 GAE/g in S.nigrum L. leaves. In the DPPH test, the highest antioxidant value (87.65%) was obtained in the S.nigrum L. leaves, whereas the smallest amount of antioxidant (50.12%)was contained in D. praehensilis Benth tuber. Similarly in FRAP assay,D. praehensilis Benth tuber showed the least reducing potential(49.16± 2.13mM Fe2+/100 g)whilst the highest reducing potential was presented in the S.nigrum L. leaves(188.12±1.13 mM Fe2+/100 g). The beta-carotene content was found between 11.81±0.00 mg/100g in D. praehensilis Benth tubers to 34.49±0.95 mg/100g in V. membranacea A. Rich leaves. The concentration of vitamin C ranged from 10.00±0.61 in D. praehensilis Benth tubers to 45±1.80 mg/100g in V. membranacea A. Rich leaves. The results showed that high positive linear correlations between TPC and TFC of WEPs (r=0.828), as well as between FRAP and total phenolic contents (r = 0.943) and FRAP and vitamin C (r= 0.928). Conclusion: These findings showed the total phenolic and flavonoid contents of Solanum nigrum L. and Cleome gynandra L, respectively, are abundant. The outcome may be used as a natural supply of dietary antioxidants, which may be useful in preventing oxidative stress. The study's findings also showed that Vigna membranacea A. Rich leaves were cheap source of vitamin C and beta-carotene for people who consumed these wild green. Additional research on the in vivo antioxidant activity, toxicological analysis, and promotion of these wild food plants for agricultural production should be taken into consideration.

Keywords: antioxidant activity, beta-carotene, flavonoids, phenolic content, and vitamin c

Procedia PDF Downloads 104
63 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 102
62 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 129
61 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 303
60 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Alec Chabwinja, Cannan Tawonezvi, Jerneja Vidmar, Constance Chingwaru, Walter Chingwaru

Abstract:

Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: lactic acid bacteria, Staphylococcus aureus, Streptococcus spp, yeast, inhibition, acid tolerance

Procedia PDF Downloads 412
59 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 74
58 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 68
57 Authenticity from the Perspective of Locals: What Prince Edward Islanders Had to Say about Authentic Tourism Experiences

Authors: Susan C. Graham

Abstract:

Authenticity has grown to be ubiquitous within the tourism vernacular. Yet, agreement regarding what authenticity means in relation to tourism remains nebulous. In its simplest form, authenticity in tourism refers to products and experiences that provide insights into the social, cultural, economic, natural, historical, and political life of a place. But this definition is unwieldy in its scope and may not help industry leaders nor tourist in identifying that which is authentic. Much of what is projected as authentic is a carefully curated and crafted message developed by marketers to appeal to visitors and bears little resemblance to the everyday lives of locals. So perhaps one way to identify authentic tourism experiences is to ask locals themselves. The purpose of this study was to explore the perspectives of locals with respect to what constituted an authentic tourism experience in Prince Edward Island (PEI), Canada. Over 600 volunteers in a tourism research panel were sent a survey asking them to describe authentic PEI experiences within ten sub-categories relevant to the local tourism industry. To make participation more manageable, each respondent was asked their perspectives on any three of the tourism sub-categories. Over 400 individuals responded, providing 1391 unique responses. The responses were grouped thematically using interpretive phenomenological analysis whereby the participants’ responses were clustered into higher order groups to extract meaning. Two interesting thematic observations emerged: first, that respondents tended to clearly articulate and differentiate between intra- versus interpersonal experiences as a means of authentically experiencing PEI; and second, while respondents explicitly valued unstaged experiences over staged, several exceptions to this general rule were expressed. Responses could clearly be grouped into those that emphasized “going off the beaten path,” “exploring pristine and untouched corners,” “lesser known,” “hidden”, “going solo,” and taking the opportunity to “slow down.” Each of these responses was “self” centered, and focused on the visitor discovering and exploring in search of greater self-awareness and inner peace. In contrast, other responses encouraged the interaction of visitors with locals as a means of experiencing the authentic place. Respondents sited “going deep-sea fishing” to learn about local fishers and their communities, stopping by “local farm stands” and speaking with farmers who worked the land for generations,” patronizing “local restaurants, pubs, and b&bs”, and partaking in performances or exhibits by local artists. These kinds of experiences, the respondents claimed, provide an authentic glimpse into a place’s character. The second set of observations focused on the distinction between staged and unstaged experiences, with respondents overwhelmingly advocating for unstaged. Responses were clear in shunning “touristy,” “packaged,” and “fake” offerings for being inauthentic and misrepresenting the place as locals view it. Yet many respondents made exceptions for certain “staged” experiences, including (quite literally) the stage production of Anne of Green Gables based on the novel of the same name, the theatrical re-enactment of the founding of Canada, and visits to PEI’s many provincial and national parks, all of which respondents considered both staged and authentic at the same time.

Keywords: authentic, local, Prince Edward Island, tourism

Procedia PDF Downloads 267
56 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 354
55 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines

Authors: Cristobal García

Abstract:

The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.

Keywords: SHM, vibrations, connections, floating offshore platform

Procedia PDF Downloads 126
54 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)

Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida

Abstract:

Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.

Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction

Procedia PDF Downloads 394
53 Studies on the Bioactivity of Different Solvents Extracts of Selected Marine Macroalgae against Fish Pathogens

Authors: Mary Ghobrial, Sahar Wefky

Abstract:

Marine macroalgae have proven to be rich source of bioactive compounds with biomedical potential, not only for human but also for veterinary medicine. Emergence of microbial disease in aquaculture industries implies serious loses. Usage of commercial antibiotics for fish disease treatment produces undesirable side effects. Marine organisms are a rich source of structurally novel biologically active metabolites. Competition for space and nutrients led to the evolution of antimicrobial defense strategies in the aquatic environment. The interest in marine organisms as a potential and promising source of pharmaceutical agents has increased in the last years. Many bioactive and pharmacologically active substances have been isolated from microalgae. Compounds with antibacterial, antifungal and antiviral activities have been also detected in green, brown and red algae. Selected species of marine benthic algae belonging to the Phaeophyta and Rhodophyta, collected from different coastal areas of Alexandria (Egypt), were investigated for their antibacterial and antifungal, activities. Macroalgae samples were collected during low tide from the Alexandria Mediterranean coast. Samples were air dried under shade at room temperature. The dry algae were ground, using electric mixer grinder. They were soaked in 10 ml of each of the solvents acetone, ethanol, methanol and hexane. Antimicrobial activity was evaluated using well-cut diffusion technique In vitro screening of organic solvent extracts from the marine macroalgae Laurencia pinnatifida, Pterocladia capillaceae, Stepopodium zonale, Halopteris scoparia and Sargassum hystrix, showed specific activity in inhibiting the growth of five virulent strains of bacteria pathogenic to fish Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum, V. tandara, Escherichia coli and two fungi Aspergillus flavus and A. niger. Results showed that, acetone and ethanol extracts of all test macroalgae exhibited antibacterial activity, while acetone extract of the brown Sargassum hystrix displayed the highest antifungal activity. The extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria rather than fungi tested. The gas liquid chromatography coupled with mass spectrometry detection technique allows good qualitative and quantitative analysis of the fractionated extracts with high sensitivity to the smaller amounts of components. Results indicated that, the main common component in the acetone extracts of L. pinnatifida and P. capillacea is 4-hydroxy-4-methyl2-pentanone representing 64.38 and 58.60%. Thus, the extracts derived from the red macroalgae were more efficient than those obtained from the brown macroalgae in combating bacterial pathogens rather than pathogenic fungi. The most preferred species over all was the red Laurencia pinnatifida. In conclusion, the present study provides the potential of red and brown macroalgae extracts for development of anti-pathogenic agents for use in fish aquaculture.

Keywords: bacteria, fungi, extracts, solvents

Procedia PDF Downloads 438
52 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks

Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry

Abstract:

Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.

Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science

Procedia PDF Downloads 304
51 Measuring the Impact of Social Innovation Education on Student’s Engagement

Authors: Irene Kalemaki, Ioanna Garefi

Abstract:

Social Innovation Education (SIE) is a new educational approach that aims to empower students to take action for a more democratic and sustainable society. Conceptually and pedagogically wise, it is situated at the intersection of Enterprise Education and Citizenship Education as it aspires to i) combine action with activism, ii) personal development with collective efficacy, iii) entrepreneurial mindsets with democratic values and iv) individual competences with collective competences. This paper abstract presents the work of the NEMESIS project, funded by H2020, that aims to design, test and validate the first consolidated approach for embedding Social Innovation Education in schools of primary and secondary education. During the academic year 2018-2019, eight schools from five European countries experimented with different approaches and methodologies to incorporate SIE in their settings. This paper reports briefly on these attempts and discusses the wider educational philosophy underlying these interventions with a particular focus on analyzing the learning outcomes and impact on students. That said, this paper doesn’t only report on the theoretical and practical underpinnings of SIE, but most importantly, it provides evidence on the impact of SIE on students. In terms of methodology, the study took place from September 2018 to July 2019 in eight schools from Greece, Spain, Portugal, France, and the UK involving directly 56 teachers, 1030 students and 69 community stakeholders. Focus groups, semi-structured interviews, classroom observations as well as students' written narratives were used to extract data on the impact of SIE on students. The overall design of the evaluation activities was informed by a realist approach, which enabled us to go beyond “what happened” and towards understanding “why it happened”. Research findings suggested that SIE can benefit students in terms of their emotional, cognitive, behavioral and agentic engagement. Specifically, the emotional engagement of students was increased because through SIE interventions; students voice was heard, valued, and acted upon. This made students feel important to their school, increasing their sense of belonging, confidence and level of autonomy. As regards cognitive engagement, both students and teachers reported positive outcomes as SIE enabled students to take ownership of their ideas to drive their projects forward and thus felt more motivated to perform in class because it felt personal, important and relevant to them. In terms of behavioral engagement, the inclusive environment and the collective relationships that were reinforced through the SIE interventions had a direct positive impact on behaviors among peers. Finally, with regard to agentic engagement, it has been observed that students became very proactive which was connected to the strong sense of ownership and enthusiasm developed during collective efforts to deliver real-life social innovations. Concluding, from a practical and policy point of view these research findings could encourage the inclusion of SIE in schools, while from a research point of view, they could contribute to the scientific discourse providing evidence and clarity on the emergent field of SIE.

Keywords: education, engagement, social innovation, students

Procedia PDF Downloads 138
50 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 198
49 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 170
48 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions

Authors: Dahunsi Michael Oluseyi

Abstract:

This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.

Keywords: eco-friendly, innovation, sustainability, stakeholders

Procedia PDF Downloads 63
47 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds

Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.

Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy

Procedia PDF Downloads 261
46 Method of Nursing Education: History Review

Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán

Abstract:

Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.

Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education

Procedia PDF Downloads 116
45 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange

Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas

Abstract:

Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.

Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis

Procedia PDF Downloads 66
44 Fabrication of Antimicrobial Dental Model Using Digital Light Processing (DLP) Integrated with 3D-Bioprinting Technology

Authors: Rana Mohamed, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Bio-fabrication is a multidisciplinary research field that combines several principles, fabrication techniques, and protocols from different fields. The open-source-software movement is a movement that supports the use of open-source licenses for some or all software as part of the broader notion of open collaboration. Additive manufacturing is the concept of 3D printing, where it is a manufacturing method through adding layer-by-layer using computer-aided designs (CAD). There are several types of AM system used, and they can be categorized by the type of process used. One of these AM technologies is Digital light processing (DLP) which is a 3D printing technology used to rapidly cure a photopolymer resin to create hard scaffolds. DLP uses a projected light source to cure (Harden or crosslinking) the entire layer at once. Current applications of DLP are focused on dental and medical applications. Other developments have been made in this field, leading to the revolutionary field 3D bioprinting. The open-source movement was started to spread the concept of open-source software to provide software or hardware that is cheaper, reliable, and has better quality. Objective: Modification of desktop 3D printer into 3D bio-printer and the integration of DLP technology and bio-fabrication to produce an antibacterial dental model. Method: Modification of a desktop 3D printer into a 3D bioprinter. Gelatin hydrogel and sodium alginate hydrogel were prepared with different concentrations. Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum were extracted, and extractions were selected on different levels (Powder, aqueous extracts, total oils, and Essential oils) prepared for antibacterial bioactivity. Agar well diffusion method along with the E. coli have been used to perform the sensitivity test for the antibacterial activity of the extracts acquired by Zingiber officinale, Syzygium aromaticum, and Allium sativum. Lastly, DLP printing was performed to produce several dental models with the natural extracted combined with hydrogel to represent and simulate the Hard and Soft tissues. Result: The desktop 3D printer was modified into 3D bioprinter using open-source software Marline and modified custom-made 3D printed parts. Sodium alginate hydrogel and gelatin hydrogel were prepared at 5% (w/v), 10% (w/v), and 15%(w/v). Resin integration with the natural extracts of Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum was done following the percentage 1- 3% for each extract. Finally, the Antimicrobial dental model was printed; exhibits the antimicrobial activity, followed by merging with sodium alginate hydrogel. Conclusion: The open-source movement was successful in modifying and producing a low-cost Desktop 3D Bioprinter showing the potential of further enhancement in such scope. Additionally, the potential of integrating the DLP technology with bioprinting is a promising step toward the usage of the antimicrobial activity using natural products.

Keywords: 3D printing, 3D bio-printing, DLP, hydrogel, antibacterial activity, zingiber officinale, syzygium aromaticum, allium sativum, panax ginseng, dental applications

Procedia PDF Downloads 96
43 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75
42 The Association between Gene Polymorphisms of GPX, SEPP1, and SEP15, Plasma Selenium Levels, Urinary Total Arsenic Concentrations, and Prostate Cancer

Authors: Yu-Mei Hsueh, Wei-Jen Chen, Yung-Kai Huang, Cheng-Shiuan Tsai, Kuo-Cheng Yeh

Abstract:

Prostate cancer occurs in men over the age of 50, and rank sixth of the top ten cancers in Taiwan, and the incidence increased gradually over the past decade in Taiwan. Arsenic is confirmed as a carcinogen by International Agency for Research on (IARC). Arsenic induces oxidative stress may be a risk factor for prostate cancer, but the mechanism is not clear. Selenium is an important antioxidant element. Whether the association between plasma selenium levels and risk of prostate cancer are modified by different genotype of selenoprotein is still unknown. Glutathione peroxidase, selenoprotein P (SEPP1) and 15 kDa selenoprotein (SEP 15) are selenoprotein and regulates selenium transport and the oxidation and reduction reaction. However, the association between gene polymorphisms of selenoprotein and prostate cancer is not yet clear. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinary total arsenic concentration and prostate cancer. This study is a hospital-based case-control study. Three hundred twenty-two cases of prostate cancer and age (±5 years) 1:1 matched 322 control group were recruited from National Taiwan University Hospital, Taipei Medical University Hospital, and Wan Fang Hospital. Well-trained personnel carried out standardized personal interviews based on a structured questionnaire. Information collected included demographic and socioeconomic characteristics, lifestyle and disease history. Blood and urine samples were also collected at the same time. The Research Ethics Committee of National Taiwan University Hospital, Taipei, Taiwan, approved the study. All patients provided informed consent forms before sample and data collection. Buffy coat was to extract DNA, and the polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) was used to measure the genotypes of SEPP1 rs3797310, SEP15 rs5859, GPX1 rs1050450, GPX2 rs4902346, GPX3 rs4958872, and GPX4 rs2075710. Plasma concentrations of selenium were determined by inductively coupled plasma mass spectrometry (ICP-MS).Urinary arsenic species concentrations were measured by high-performance liquid chromatography links hydride generator and atomic absorption spectrometer (HPLC-HG-AAS). Subject with high education level compared to those with low educational level had a lower prostate cancer odds ratio (OR) Mainland Chinese and aboriginal people had a lower OR of prostate cancer compared to Fukien Taiwanese. After adjustment for age, educational level, subjects with GPX1 rs1050450 CT and TT genotype compared to the CC genotype have lower, OR of prostate cancer, the OR and 95% confidence interval (Cl) was 0.53 (0.31-0.90). SEPP1 rs3797310 CT+TT genotype compared to those with CC genotype had a marginally significantly lower OR of PC. The low levels of plasma selenium and the high urinary total arsenic concentrations had the high OR of prostate cancer in a significant dose-response manner, and SEPP1 rs3797310 genotype modified this joint association.

Keywords: prostate cancer, plasma selenium concentration, urinary total arsenic concentrations, glutathione peroxidase, selenoprotein P, selenoprotein 15, gene polymorphism

Procedia PDF Downloads 268
41 Effect of Chitosan Oligosaccharide from Tenebrio Molitor on Prebiotics

Authors: Hyemi Kim, Jay Kim, Kyunghoon Han, Ra-Yeong Choi, In-Woo Kim, Hyung Joo Suh, Ki-Bae Hong, Sung Hee Han

Abstract:

Chitosan is used in various industries such as food and medical care because it is known to have various functions such as anti-obesity, anti-inflammatory and anti-cancer benefits. Most of the commercial chitosan is extracted from crustaceans. As the harvest rate of snow crabs and red snow crabs decreases and safety issues arise due to environmental pollution, research is underway to extract chitosan from insects. In this study, we used Response Surface Methodology (RSM) to predict the optimal conditions to produce chitosan oligosaccharides from mealworms (MCOS), which can be absorbed through the intestine as low-molecular-weight chitosan. The experimentally confirmed optimal conditions for MCOS production using chitosanase were found to be a substrate concentration of 2.5%, enzyme addition of 30 mg/g and a reaction time of 6 hours. The chemical structure and physicochemical properties of the produced MCOS were measured using MALDI-TOF mass spectra and FTIR spectra. The MALDI-TOF mass spectra revealed peaks corresponding to the dimer (375.045), trimer (525.214), tetramer (693.243), pentamer (826.296), and hexamer (987.360). In the FTIR spectra, commercial chitosan oligosaccharides exhibited a weak peak pattern at 3500-2500 cm-1, unlike chitosan or chitosan oligosaccharides. There was a difference in the peak at 3200~3500 cm-1, where different vibrations corresponding to OH and amine groups overlapped. Chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide showed peaks at 2849, 2884, and 2885 cm-1, respectively, attributed to the absorption of the C-H stretching vibration of methyl or methine. The amide I, amide II, and amide III bands of chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide exhibited peaks at 1620/1620/1602, 1553/1555/1505, and 1310/1309/1317 cm-1, respectively. Furthermore, the solubility of MCOS was 45.15±3.43, water binding capacity (WBC) was 299.25±4.57, and fat binding capacity (FBC) was 325.61±2.28 and the solubility of commercial chitosan oligosaccharides was 49.04±9.52, WBC was 280.55±0.50, and FBC was 157.22±18.15. Thus, the characteristics of MCOS and commercial chitosan oligosaccharides are similar. The results of investigating the impact of chitosan oligosaccharide on the proliferation of probiotics revealed increased growth in L. casei, L. acidophilus, and Bif. Bifidum. Therefore, the major short-chain fatty acids produced by gut microorganisms, such as acetic acid, propionic acid, and butyric acid, increased within 24 hours of adding 1% (p<0.01) and 2% (p<0.001) MCOS. The impact of MCOS on the overall gut microbiota was assessed, revealing that the Chao1 index did not show significant differences, but the Simpson index decreased in a concentration-dependent manner, indicating a higher species diversity. The addition of MCOS resulted in changes in the overall microbial composition, with an increase in Firmicutes and Verrucomicrobia (p<0.05) compared to the control group, while Proteobacteria and Actinobacteria (p<0.05) decreased. At the genus level, changes in microbiota due to MCOS supplementation showed an increase in beneficial bacteria like lactobacillus, Romboutsia, Turicibacter, and Akkermansia (p<0.0001) while harmful bacteria like Enterococcus, Morganella, Proterus, and Bacteroides (p<0.0001) decreased. In this study, chitosan oligosaccharides were successfully produced under established conditions from mealworms, and these chitosan oligosaccharides are expected to have prebiotic effects, similar to those obtained from crabs.

Keywords: mealworms, chitosan, chitosan oligosaccharide, prebiotics

Procedia PDF Downloads 64
40 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico

Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón

Abstract:

The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.

Keywords: interaction, political communication, social network analysis, Twitter

Procedia PDF Downloads 222
39 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 186
38 Developing Primary Care Datasets for a National Asthma Audit

Authors: Rachael Andrews, Viktoria McMillan, Shuaib Nasser, Christopher M. Roberts

Abstract:

Background and objective: The National Review of Asthma Deaths (NRAD) found that asthma management and care was inadequate in 26% of cases reviewed. Major shortfalls identified were adherence to national guidelines and standards and, particularly, the organisation of care, including supervision and monitoring in primary care, with 70% of cases reviewed having at least one avoidable factor in this area. 5.4 million people in the UK are diagnosed with and actively treated for asthma, and approximately 60,000 are admitted to hospital with acute exacerbations each year. The majority of people with asthma receive management and treatment solely in primary care. This has therefore created concern that many people within the UK are receiving sub-optimal asthma care resulting in unnecessary morbidity and risk of adverse outcome. NRAD concluded that a national asthma audit programme should be established to measure and improve processes, organisation, and outcomes of asthma care. Objective: To develop a primary care dataset enabling extraction of information from GP practices in Wales and providing robust data by which results and lessons could be drawn and drive service development and improvement. Methods: A multidisciplinary group of experts, including general practitioners, primary care organisation representatives, and asthma patients was formed and used as a source of governance and guidance. A review of asthma literature, guidance, and standards took place and was used to identify areas of asthma care which, if improved, would lead to better patient outcomes. Modified Delphi methodology was used to gain consensus from the expert group on which of the areas identified were to be prioritised, and an asthma patient and carer focus group held to seek views and feedback on areas of asthma care that were important to them. Areas of asthma care identified by both groups were mapped to asthma guidelines and standards to inform and develop primary and secondary care datasets covering both adult and pediatric care. Dataset development consisted of expert review and a targeted consultation process in order to seek broad stakeholder views and feedback. Results: Areas of asthma care identified as requiring prioritisation by the National Asthma Audit were: (i) Prescribing, (ii) Asthma diagnosis (iii) Asthma Reviews (iv) Personalised Asthma Action Plans (PAAPs) (v) Primary care follow-up after discharge from hospital (vi) Methodologies and primary care queries were developed to cover each of the areas of poor and variable asthma care identified and the queries designed to extract information directly from electronic patients’ records. Conclusion: This paper describes the methodological approach followed to develop primary care datasets for a National Asthma Audit. It sets out the principles behind the establishment of a National Asthma Audit programme in response to a national asthma mortality review and describes the development activities undertaken. Key process elements included: (i) mapping identified areas of poor and variable asthma care to national guidelines and standards, (ii) early engagement of experts, including clinicians and patients in the process, and (iii) targeted consultation of the queries to provide further insight into measures that were collectable, reproducible and relevant.

Keywords: asthma, primary care, general practice, dataset development

Procedia PDF Downloads 176