Search results for: H₂S concentrations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2664

Search results for: H₂S concentrations

624 Comparative Analysis of Short and Long Term Salt Stress on the Photosynthetic Apparatus and Chloroplast Ultrastructure of Thellungiella salsuginea

Authors: Rahma Goussi, Walid Derbali, Arafet Manaa, Simone Cantamessa, Graziella Berta, Chedly Abdelly, Roberto Barbato

Abstract:

Salinity is one of the most important abiotic affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary processes to be affected by salinity. Here, we report the effects of salinity stress on the primary processes of photosynthesis in a model halophyte Thellungiella Salsuginea. Plants were cultivated in hydroponic system with different NaCl concentrations (0, 100, 200 and 400 mM) during 2 weeks. The obtained results showed an obvious change in the photosynthetic efficiency of photosystem I (PSI) and phostosytem II (PSII), related to NaCl concentration supplemented to the medium and the stress duration considered. With moderate salinity (100 and 200 mM NaCl), no significant variation was observed in photosynthetic parameters of PSI and PSII and Chl fluorescence whatever the time of stress application. Also, the photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by salt stress. While a significant decrease was observed on quantum yields Y(I), Y(II) and electron transport rate ETR(I), ETR(II) under high salt treatment (400 mM NaCl) with prolonged period (15 days). This reduction is quantitatively compensated by a corresponding increase of energy dissipation Y(NPQ) and a progressive decrease in Fv/Fm under salt treatment. The intensity of the OJIP fluorescence transient decreased with increase in NaCl concentration, with a major effect observed during prolonged period of salt stress. Ultrastructural analysis with Light Microscopy and Transmission Electron Microscopy of T. salsuginea chloroplasts showed some cellular changes, such as the shape of the mesophyll cells and number of chloroplast/cell only under higher NaCl concentration. Salt-stress caused the swelling of thylakoids in T. Salsuginea mesophyll with more accumulation of starch as compared to control plant.

Keywords: fluorescence, halophyte, photosynthesis, salt stress

Procedia PDF Downloads 376
623 Pharmacognostic, Phytochemical and Antibacterial Activity of Beaumontia Randiflora

Authors: Narmeen Mehmood

Abstract:

The current study was conducted to evaluate the pharmacognostic parameters, phytochemical analysis and antibacterial activity of the plant. Microscopic studies were carried out to determine various Pharmacognostic parameters. Section cutting of the leaf was also done. The study of the ariel parts of Beaumontia grandiflora resulted in the identification of fatty acids mixture and unsaponifiable matters. For the separation of various constituents of the plant, successive solvent extraction was carried out in a laboratory. Material and Methods: The study was carried out with all three extracts of Beaumontia grandiflora i.e. Petroleum ether, Chloroform and Methanol. For the separation of various constituents of the plant, successive solvent extraction was carried out in the laboratory. Raw data containing the measured zones of inhibition in mm was tabulated. Results: The microscopic studies showed the presence of Upper epidermis in surface view, Part of Lamina in section view, cortical parenchyma in longitudinal view, Parenchyma with collapsed tissues, Parenchyma Cells, Epidermal cells with a part of covering trichome, starch granules, reticulated thickened vessels, Transverse Section of leaf of Beaumontia grandiflora showed Upper Epidermis, Lower Epidermis, Hairs, Vascular Bundles, Parenchyma. Phytochemical analysis of leaves of Beaumontia grandiflora indicates that Alkaloids are present. There is a possibility of the presence of some bioactive components in the crude extracts due to which it shows strong activity. Petroleum ether extract shows a greater zone of inhibition at low concentrations. Conclusion: The alkaloids possess good antibacterial activity so the presence of alkaloids may be responsible for the antibacterial activity observed in the crude organic extract of Beaumontia grandiflora.

Keywords: successive solvent extraction, zone of inhibitions., microscopy, phytochemical analysis

Procedia PDF Downloads 21
622 Chinese on the Move: Residential Mobility and Evolution of People's Republic of China-Born Migrants in Australia

Authors: Siqin Wang, Jonathan Corcoran, Yan Liu, Thomas Sigler

Abstract:

Australia is a quintessentially immigrant nation with 28 percent of its residents being foreign-born. By 2011, People’s Republic of China (PRC) overtook the United Kingdom to become the largest source country in Australia. Significantly, the profile of PRC-born migrants has changed to mirror broader global shifts towards high-skilled labour, education-related, and investment-focussed migration, all of which reflect an increasing trend in the mobility of wealthy and/or educated cohorts. Together, these coalesce to form a more complex pattern of migrant settlement –both spatially and socio-economically. This paper focuses on the PRC-born migration, redresses these lacunae, with regard to the settlement outcomes of PRC migrants to Australia, with a particular focus on spatial evolution and residential mobility at both the metropolitan and national scales. By drawing on Census Data and migration Micro Datasets, the aim of this paper is to examine the shifting dynamics of PRC-born migrants in Australian capital cities to unveil their socioeconomic characteristics, residential patterns and change of spatial concentrations during their transition into the new host society. This paper finds out three general patterns in the residential evolution of PRC-born migrants depending on the size of capital cities where they settle down, as well as the association of socio-economic characters with the formation of enclaves. It also examines the residential mobility across states and cities from 2001 to 2011 indicating the rising status of median-size Australian capital cities for receiving PRC-born migrants. The paper concludes with a discussion of evidences for policy formation, facilitates the effective transition of PRC-born populations into the mainstream of host society and enhances social harmony to help Australia become a more successful multicultural nation.

Keywords: Australia, Chinese migrants, residential mobility, spatial evolution

Procedia PDF Downloads 231
621 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum

Authors: Lidia Kowalska, Edward Arseniuk

Abstract:

Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.

Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding

Procedia PDF Downloads 120
620 The Impact of Oxytetracycline on the Aquaponic System, Biofilter, and Plants

Authors: Hassan Alhoujeiri, Angele Matrat, Sandra Beaufort, Claire joaniss Cassan, Jerome Silvester

Abstract:

Aquaponics is a sustainable food production technology, and its transition to industrial-scale systems has created several challenges that require further investigation in order to make it a robust process. One of the critical concerns is the potential accumulation of compounds from veterinary treatments, phytosanitary agents, fish feed, or simply from contaminated water sources. The accumulation of these substances could negatively impact fish health, microbial biofilters, and plant growth, thereby disrupting the system’s overall balance and functionality. The lack of legislation and knowledge regarding the presence of such compounds in aquaponic systems raises concerns about their potential impact on both system balance and food safety. In this study, we focused on the effects of oxytetracycline (OTC), an antibiotic commonly used in aquaculture, on both the microbial biofilter and plant growth. Although OTC is rarely applied in aquaponics today, the fish compartment may need to be isolated from the system during treatment, as it inhibits specific bacterial populations, which could affect the microbial biofilter's efficiency. However, questions remain about the aquaponic system's tolerance threshold, particularly in cases of treatment or residual OTC traces post-treatment. This study results indicated a decline in microbial biofilter activity to 20% compared to the control, potentially corresponding to treatments of 41 mg/L of OTC. Analysis of microbial populations in the biofilter, using flow cytometry and microscopy (confocal and scanning electron microscopy), revealed an increase in bacterial mortality without disrupting the microbial biofilm. Additionally, OTC exposure led to noticeable changes in plant morphology (e.g., color) and growth, though it did not fully inhibit development. However, no significant effects were observed on seed germination at the tested concentrations despite a measurable impact on subsequent plant growth.

Keywords: aquaponic, oxytetracycline, nitrifying biofilter, plant, micropollutants, sustainability

Procedia PDF Downloads 18
619 Arsenic and Fluoride Contamination in Lahore, Pakistan: Spatial Distribution, Mineralization Control and Sources

Authors: Zainab Abbas Soharwardi, Chunli Su, Harold Wilson Tumwitike Mapoma, Syed Zahid Aziz, Mahmut Ince

Abstract:

This study investigated the spatial variations of groundwater chemistry used by communities in Lahore city with emphasis on arsenic (As) and fluoride (F) levels. A total of 472 tubewell samples were collected from 7 towns and analyzed for physical and chemical parameters, including pH, turbidity, electrical conductivity (EC), total dissolved solids (TDS), total hardness, HCO3, Ca2+, Mg2+, Na+, K+, SO42-, Cl-, NO3-, NO2-, F- and As. There were significant spatial variations observed for total hardness, TDS, HCO3, NO3 and As. In general, the south-east of the city displayed higher TH and HCO3 while the north-east showed significantly higher As concentrations attributed to the heterogeneity of the aquifer and industrial activities. In most cases, As was higher than WHO limit value. Indiscriminate disposal of domestic and commercial wastewater into River Ravi is the cause of elevated NO3 observed in the north-west compared to other places in the area. Investigation of the groundwater type revealed facies in the order: Ca-Mg-HCO3-SO4 > Mg-Ca-HCO3-SO4 > Ca-Mg-HCO3-SO4-Cl > Mg-Ca-HCO3-SO4 > Ca-HCO3-SO4 > Ca-Mg-SO4-HCO3. The plausible mineralization control mechanism seems to be that of carbonate weathering, although silicate weathering is probable. Moreover, PHREEQC model results showed that the groundwater was under saturated with respect to evaporites (anhydrite, fluorite, gypsum and halite) while generally equilibrium to saturated with respect to aragonite, calcite and dolomite. The Hierarchical Cluster Analysis (HCA) showed that pH significantly affected As, F, NO3 and NO2 while HCO3 contributing most to the observed TDS values in Lahore. It is concluded that inherent mineral dissolution/ precipitation, pH, oxic conditions, anthropogenic activities, atmospheric transport/ wet deposition, microbial activities and surface soil characteristics play their significant roles in elevating both As and F in the city's groundwater.

Keywords: Lahore, arsenic, fluoride, groundwater

Procedia PDF Downloads 549
618 The Modulatory Effect of Some Antioxidants on Animal Model of Metabolic Syndrome Induced by High Fructose Fed Diet

Authors: Hala M. Abdelkarem, Abeer H. Gafeer

Abstract:

The metabolic syndrome (Mts) is a constellation of risk factors. The main objective of this study is to compare the ameliorating effect of metformin, lipitor, orilstate, lipoic acid and carnitin on insulin, lipid profile, leptin, adenonectin levels in metabolic syndrom (high fructose fed rats HF). Seventy male albino rats were divided into seven groups. G1: normal control. G2: G7 rats fed HF for 8wks. After four wk HF feeding, G3, G4, G5, G6, and G7 were orally administered (200 mg/kg daily) metformin, lipitor, orilstate, lipoic acid and carnitin respectively. All drugs were adminiseterd once daily. After 8 weeks of feeding, a significant increase in blood glucose level was observed in HF fed rats compared to normal rats, but this increase was significantly decreased after administration of metformin and lipitor. The raised of serum insulin level in HF fed rats was significantly decreased after administration of lipoic, carnitin, metformin. Significant higher concentrations of triglycerides (TG), total cholesterol & low density lipoprotein cholesterol (LDL- C) were observed in HF fed rats and these increases were significantly lowered after the administration of all the previous drugs. There was a significant decrease in serum high density lipoprotein cholesterol (HDL-C) in HF group administration of all drugs alleviates this reduction. The increased of serum leptin level in HF group was decreased significantly in met and orilstate groups. Whereas the reduction of serum adiponectin level in HF fed rats was increased in Lipitor, carnitin, orilstate groups. These data suggested that benefial effect of metformin, lipitor, orilstate, lipoic acid carnitin in reducing risk for people with decreased insulin sensitivity, increased oxidative stress and hyperlipidemia such as those with the metabolic syndrome or type 2 diabetes.

Keywords: metabolic syndrome, diabetes, proinflammation, antioxidants

Procedia PDF Downloads 323
617 Development of Probiotic Cereal Beverage Using Yeast and Lactic Acid Bacteria Fermentation

Authors: Tuaumelsan Shumye Gebre, Shimelis Admassu Emire, Simon Okomo Aloo, Ramachandran Chelliah, Deog-Hwan Oh

Abstract:

This study investigates the fermentation of cereal substrates, based on the Ethiopian traditional beverage borde, using probiotic strains of Pediococcus acidilactici WS07 and Saccharomyces cerevisiae AM18 used singly and in co-culture. The pH and titratable acidity, microbial growth dynamics, fermentable sugars profile, volatile organic compounds, total flavonoid content, total phenolic content, antioxidant activity, pancreatic lipase, and α-glucosidase inhibition were analyzed. The viability of every tested strain remained higher than 7 log CFU/mL, satisfying the requirements suggested for probiotic food items. The formation of organic acids is what caused the pH to decrease from roughly 6.6 to 3.8, yet this had no effect on the viability of the microorganisms. The fermentation process, involving P. acidilactici WS07 and S. cerevisiae AM18, led to the utilization of initial carbohydrates, production of organic acids, and generation of volatile compounds that enhance flavor and aroma. Ethanol and glycerol concentrations increased during fermentation, particularly in co-culture assays, contributing to the sensory qualities and stability of the beverages. The primary organic acids generated during fermentation were lactic and acetic acids. A total of 22 volatile substances, such as acids, alcohols, aldehydes, esters, ketones, and other substances, were found. Furthermore, the study demonstrates that fermentation of maize and sorghum with P. acidilactici WS07 and S. cerevisiae AM18 enhances the antioxidant activity and inhibition of pancreatic lipase and α-glucosidase, suggesting potential benefits in managing obesity and diabetes. Therefore, co-cultivating S. cerevisiae AM18 and P. acidilactici WS07 in cereal fermentation led to the successful production of probiotic drinks.

Keywords: probiotic beverage, Pediococcus acidilactici, Saccharomyces cerevisiae, volatile compounds

Procedia PDF Downloads 36
616 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage

Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storage

Keywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp

Procedia PDF Downloads 213
615 Biological Activities of Protease Inhibitors from Cajanus cajan and Phaseolus limensis

Authors: Tooba N. Shamsi, Romana Perveen, Sadaf Fatima

Abstract:

Protease Inhibitors (PIs) are widespread in nature, produced by animals, plants and microorganisms. They play vital role in various biological activities by keeping a check on activity of proteases. Present study aims to investigate antioxidant and anti-inflammatory properties of PPI from Cajanus cajan (CCTI) and Phaseolus limensis (LBTI). PPI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. The anti-oxidant activity was analyzed by two most common radical scavenging assays of FRAP (ferric reducing antioxidant power) and DPPH (1,1- diphenyl-2-picrylhydrazyl). Also, in-vitro anti-inflammatory activity was evaluated using albumin denaturation assay and membrane stabilization assay at different concentrations. Ascorbic acid and aspirin were used as a standards for antioxidant and anti-inflammatory assays respectively. The PPIs were also checked for antimicrobial activity against a number of bacterial strains. The CCTI and LBTI showed DPPH radical scavenging activity in a concentration–dependent manner with IC50 values 544 µg/ml and 506 µg/ml respectively comparative to ascorbic acid which was 258 µg/ml. Following FRAP assay, it was evaluated that LBTI had 87.5% and CCTI showed 84.4% antioxidant activity, taking value of standard ascorbic acid to be 100%. The PPIs also showed in-vitro anti‐inflammatory activity by inhibiting the heat induced albumin denaturation with IC50 values of 686 µg/ml and 615 µg/ml for CCTI and LBTI respectively compared to the standard (aspirin) which was 70.8 µg/ml. Red blood cells membrane stabilization with IC50 values of 641 µg/ml and 587 µg/ml for CCTI and LBTI respectively against aspirin which showed IC50 value of 70.4 µg/ml. PPIs showed antibacterial activity against 7 known strains while there was apparently no action against fungi.

Keywords: Cajanus cajan, Phaseolus limensis, Lima beans, protein protease inhibitor, antioxidant, anti-inflammatory, antimicrobial activity

Procedia PDF Downloads 296
614 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga

Authors: M. F. Mamabolo

Abstract:

Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.

Keywords: Kaap river system, mines, heavy metals, sulphate

Procedia PDF Downloads 80
613 Selection of Lead Mobilizing Bacteria from Contaminated Soils and Their Potential in Promoting Plant Growth through Plant Growth Promoting Activity

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad

Abstract:

Bacterial strains were isolated from contaminated soil collected from Rawalpindi and Islamabad. The strains were investigated for lead resistance and their effect on Pb solubility and PGPR activity. Incubation experiments were carried for inoculated and unoculated soil containing different levels of Pb. Results revealed that few stains (BTM-4, BTM-11, BTM-14) were able to tolerate Pb up to 600 mg L-1, whereas five strains (BTM-3, BTM-6, BTM-10, BTM-21 and BTM-24) showed significant increase in solubility of Pb when compared to all other strains and control. The CaCl2 extractable Pb was increased by 13.6, 6.8, 4.4 and 2.4 folds compared to un-inoculated control soil at increased soil Pb concentration (500, 1000, 1500 and 200 mg kg-1, respectively). The selected bacterial strains (11) were further investigated for plant growth promotion activity through PGPR assays including. Germination and root elongation assays were also conducted under elevated metal concentration in controlled conditions to elucidate the effects of microbial strains upon plant growth and development. The results showed that all the strains tested in this study, produced significantly varying concentrations of IAA, siderophores and gibberellic acid along with ability to phosphorus solubilization index (PSI). The results of germination and root elongation assay further confirmed the beneficial role of the microbial strains in elevating metal stress through PGPR activity. Among all tested strains, BTM-10 significantly improved plant growth. 1.3 and 2.7 folds increase in root and shoot length was observed when compared to control. Which may be attributed to presence of important plant growth promoting enzymes (IAA 74.6 μg/ml; GA 19.23 μg/ml; Sidrophore units 49% and PSI 1.3 cm). The outcome of this study indicates that these Pb tolerant and solubilizing strains may have the potential for plant growth promotion under metal stress and can be used as mediator when coupled with heavy metal hyperaccumulator plants for phytoremediation of Pb contaminated soil.

Keywords: Pb resistant bacteria, Pb mobilizing bacteria, Phytoextraction of Pb, PGPR activity of bacteria

Procedia PDF Downloads 219
612 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach

Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere

Abstract:

The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.

Keywords: water quality, pollution index, risk assessment, physico-chemical parameters

Procedia PDF Downloads 166
611 Evaluation of Anti-Typhoid Effects of Azadirachta indica L. Fractions

Authors: A. Adetutu, T. M. Awodugba, O. A. Owoade

Abstract:

The development of resistance to currently known conventional anti-typhoid drugs has necessitated search into cheap, more potent and less toxic anti-typhoid drugs of plant origin. Therefore, this study investigated the anti-typhoid activity of fractions of A. indica in Salmonella typhi infected rats. Leaves of A. indica were extracted in methanol and fractionated into n-hexane, chloroform, ethyl-acetate, and aqueous fractions. The anti-salmonella potentials of fractions of A. indica were assessed via in-vitro inhibition of S. typhi using agar well diffusion, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and biofilm assays. The biochemical and haematological parameters were determined by spectrophotometric methods. The histological analysis was performed using Haematoxylin and Eosin staining methods. Data analysis was performed by one-way ANOVA. Results of this study showed that S. typhi was sensitive to aqueous and chloroform fractions of A. indica, and the fractions showed biofilm inhibition at concentrations of 12.50, 1.562, and 0.39 mg/mL. In the in-vivo study, the extract and chloroform fraction had significant (p < 0.05) effects on the number of viable S. typhi recovered from the blood and stopped salmonellosis after 6 days of treatment of rats at 500 mg/kg b.w. Treatments of infected rats with chloroform and aqueous fractions of A. indica normalized the haematological parameters in the animals. Similarly, treatment with fractions of the plants sustained a normal antioxidant status when compared with the normal control group. Chloroform and ethyl-acetate fractions of A. indica reversed the liver and intestinal degeneration induced by S. typhi infection in rats. The present investigation indicated that the aqueous and chloroform fractions of A. indica showed the potential to provide an effective treatment for salmonellosis, including typhoid fever. The results of the study may justify the ethno-medicinal use of the extract in traditional medicine for the treatment of typhoid and salmonella infections.

Keywords: Azadirachta indica L, salmonella, typhoid, leave fractions

Procedia PDF Downloads 132
610 Antimicrobial Activity of Sour Cherry Pomace

Authors: Sonja Djilas, Aleksandra Velićanski, Dragoljub Cvetković, Siniša Markov, Eva Lončar, Vesna Tumbas Šaponjac, Milica Vinčić

Abstract:

Due to high content of bioactive compounds, sour cherry possesses antioxidant and antimicrobial activity. Additionally, waste material from industrial processing of sour cherry is also a good source of bioactive compounds. The aim of this study was to screen the antimicrobial activity and determine the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) of sour cherry pomace extract. Tested strains were Gram-negative bacteria (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028 and wild isolates Escherichia coli and Salmonella sp.), Gram-positive bacteria (Staphylococcus aureus ATCC 11632, Bacillus cereus ATCC 10876 and wild isolates Staphylococcus saprophyticus and Bacillus sp.) and yeasts (Saccharomyces cerevisiae 112, Hefebank Weihenstephan and Candida albicans ATCC 10231). Antimicrobial activity was tested by disc-diffusion method and agar-well diffusion method. MIC and MBC were determined by microdilution method. Screening tests showed that Gram-negative bacteria were resistant to tested extract, with exception of Salmonella typhimurium and Salmonella sp. for which only zones of reduced growth appeared. However, Gram-positive bacteria were more sensitive where the highest clear zones appeared with 100 µl of extract applied. There was no activity against tested yeasts. MIC and MBC values were in the range 3.125-37.5 mg/ml and 6.25-100 mg/ml, respectively. The most susceptible strain was Staphylococcus aureus while the most resistant was Bacillus sp. where MBC was not found in tested concentration range. Sour cherry pomace possesses high antibacterial potential, which indicates that this waste material is a promising source of bioactive compounds and could be used as a functional food ingredient.

Keywords: antimicrobial activity, sour cherry, pomace, bioactive compounds

Procedia PDF Downloads 332
609 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 117
608 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters

Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi

Abstract:

Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).

Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents

Procedia PDF Downloads 105
607 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System

Authors: Thomas S. Abia II, Citlali Garcia-Saucedo

Abstract:

A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.

Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study

Procedia PDF Downloads 269
606 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes

Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto

Abstract:

Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.

Keywords: extraction, phycocyanin, precipitation, scale-up

Procedia PDF Downloads 438
605 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 173
604 Sensory Evaluation and Microbiological Properties of Gouda Cheese Affected by Bunium persicum (Boiss.) Essential Oil

Authors: N. Noori, P. Taherkhani, A. Akhondzadeh Basti, H. Gandomi, M. Alimohammadi

Abstract:

Research on natural antimicrobial agents, especially of plant origin, highly noticed in recent years and evaluation of antimicrobial effects of native plants such as Bunium persicum Boiss. is especially important. In the present study, sensory characteristics and microbiological properties of Gouda cheese affected by different concentrations of Bunium persicum Boiss. essential oil were investigated. Extraction of the essential oil was performed by hydro distillation. The oil was analyzed by GC using flame ionization (FID) and GC/ MS for detection. The antimicrobial effects were determined against various microbial groups (aerobic mesophilic bacteria, enterococci, mesophilic lactobacilli, enterobacteriaceae, lactococcus and yeasts). Microbial groups were counted during ripening period using plate count on specific culture media. Organoleptic evaluation including teture, flavor, odor, color and total acceptability were determined at the end of aging. According to results, the essential oil yield was 4/1 % ( W/ W). Twenty- six compounds were identified in the oil that concluded 99.7 % of the total oil. The major components of Bunium persicum Boiss. essential oil were γ- terpinene- 7- al (26.9 %) and cuminaldehyde (23.3 %). Generally, the increase of Black Cumin essential oil concentration led to reduction in microbial counts in different groups. The maximum antimicrobial effect was seen in yeast that reduced by 2 log compared to the control group at EO concentration of 4µl/ ml at day 90.The minimum reduction was observed in enterobacteriaceae that showed only 0.75 log decreese compared to the control at the same concentration of EO. Addition of EO improved organoleptic properties of Gouda cheese especially in the case of flavor and odor characteristic. However, no significant differences were observed in texture and color between treatment and control groups. Bunium persicum Boiss. essential oil could be used as preservative material and flavoring agent in some kinds of food such as cheese and also could be provided consumers health.

Keywords: Bunium persicum Boiss. essential oil, Microbiological properties, sensory evaluation, gouda cheese

Procedia PDF Downloads 325
603 Zinc Nanoparticles Modified Electrode as an Insulin Sensor

Authors: Radka Gorejova, Ivana Sisolakova, Jana Shepa, Frederika Chovancova, Renata Orinakova

Abstract:

Diabetes mellitus (DM) is a serious metabolic disease characterized by chronic hyperglycemia. Often, the symptoms are not sufficiently observable at early stages, and so hyperglycemia causes pathological and functional changes before the diagnosis of the DM. Therefore, the development of an electrochemical sensor that will be fast, accurate, and instrumentally undemanding is currently needful. Screen-printed carbon electrodes (SPCEs) can be considered as the most suitable matrix material for insulin sensors because of the small size of the working electrode. It leads to the analyst's volume reduction to only 50 µl for each measurement. The surface of bare SPCE was modified by a combination of chitosan, multi-walled carbon nanotubes (MWCNTs), and zinc nanoparticles (ZnNPs) to obtain better electrocatalytic activity towards insulin oxidation. ZnNPs were electrochemically deposited on the chitosan-MWCNTs/SPCE surface using the pulse deposition method. Thereafter, insulin was determined on the prepared electrode using chronoamperometry and electrochemical impedance spectroscopy (EIS). The chronoamperometric measurement was performed by adding a constant amount of insulin in 0.1 M NaOH and PBS (2 μl) with the concentration of 2 μM, and the current response of the system was monitored after a gradual increase in concentration. Subsequently, the limit of detection (LOD) of the prepared electrode was determined via the Randles-Ševčík equation. The LOD was 0.47 µM. Prepared electrodes were studied also as the impedimetric sensors for insulin determination. Therefore, various insulin concentrations were determined via EIS. Based on the performed measurements, the ZnNPs/chitosan-MWCNTs/SPCE can be considered as a potential candidate for novel electrochemical sensor for insulin determination. Acknowledgments: This work has been supported by the projects Visegradfund project number 22020140, VEGA 1/0095/21 of the Slovak Scientific Grant Agency, and APVV-PP-COVID-20-0036 of the Slovak Research and Development Agency.

Keywords: zinc nanoparticles, insulin, chronoamperometry, electrochemical impedance spectroscopy

Procedia PDF Downloads 122
602 Phytotechnologies for Use and Reconstitution of Contaminated Sites

Authors: Olga Shuvaeva, Tamara Romanova, Sergey Volynkin, Valentina Podolinnaya

Abstract:

Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.

Keywords: bioaccumulation, gold, heavy metals, mine tailing

Procedia PDF Downloads 171
601 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes

Authors: Z. Nourmohammadi, F. Farahani, M. Shaker

Abstract:

Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.

Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation

Procedia PDF Downloads 428
600 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro

Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo

Abstract:

Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.

Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line

Procedia PDF Downloads 251
599 Impact of Gamma Irradiation on Biological Activities of Artemisia herba alba from Algeria

Authors: Abir Mohamed Mohamed Ibrahim, Amina Titouche, Mohamed Hazzit

Abstract:

Phytotherapy is based on use of plant natural products holding the main sources of drugs with healing properties for the treatment of human, animal or vegetable diseases. With these aims, and to replace chemical preservatives in natural products, we are interested to use essential oils from Algerian endemic plants belonging to the Asteraceae family: Artemisia herba alba Asso, which was undergoes a hydro-distillation after its irradiation by Gamma rays at frequencies: 10, 20, and 30 KGray which gave respectively the following essential oil yields: 1.087%, 1.087%, 1.085%, compared with that of the untreated sample giving a yield of 1.27 %. Evaluation of the antioxidant activity in vitro of essential oil for A. herba alba has been assessed by two different methods: inhibition of DPPH radical and measurement of reducing power. The first method has not revealed a very big difference regardless of the dose of irradiation, the IC50 is about 4000 mg/l, the maximum of inhibition was around 49.4%, likewise, the test of reducing power awarded us a maximum reducing capacity was of 0.76%; both of results were registered by the specimen irradiated at 20 KGy, it has a more better antioxidant power than no irradiated sample but slightly. To combat Fusarium culmorum, causing the wilts and rots, we are focused on the antifungal screening of this aromatic plant. The results obtained, followed by measurements of Minimal Inhibitory Concentrations (MIC); showed promising inhibitory effect against pathogen tested. With a yield superior to l%, the essential oil has shown a remarkable efficiency on the stump, mainly for sample irradiate at 30KGray (MICs= 625 µg/ml; MICc= 1250 µg/ml) with MIC of 2%. These results demonstrate a good antifungal activity, to limit and even to stop the development of the pathogenic microorganism and also the positive effect of dose of irradiation to upgrade this capacity as well, to uphold the antioxidant capacity.

Keywords: artemisia herba alba Asso, essential oil yield, gamma ray, antioxidant activity, antifungal activity

Procedia PDF Downloads 519
598 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 202
597 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System

Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler

Abstract:

PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic

Keywords: drug delivery, growth factors, hMSC, liposomes, nanofibres

Procedia PDF Downloads 289
596 Evidence of Microplastic Pollution in the Río Bravo/Rio Grande (Mexico/US Border)

Authors: Stephanie Hernández-Carreón, Judith Virginia Ríos-Arana

Abstract:

Microplastics (MPs) are plastic particles smaller than 5 mm that has been detected in soil, air, organisms, and mostly water around the world. Most studies have focused on MPs detection in marine waters, and less so in freshwater, such is the case of Mexico, where studies about MPs in freshwaters are limited. One of the most important rivers in the country is The Rio Grande/Río Bravo, a natural border between Mexico and the United States. Its waters serve different purposes, such as fishing, habitat to endemic species, electricity generation, agriculture, and drinking water sources, among others. Despite its importance, the river’s waters have not been analyzed to determine the presence of MPs; therefore, the purpose of this research is to determine if the Rio Bravo/Rio Grande is polluted with microplastics. For doing so, three sites (Borderland, Casa de Adobe, and Guadalupe) along the El Paso-Juárez metroplex have been sampled: 30 L of water were filtered through a plankton net (64 µm) in each site and sediments-composed samples were collected. Water samples and sediments were 1) digested with a hydrogen peroxide solution (30%), 2) resuspended in a calcium chloride solution (1.5 g/cm3) to separate MPs, and 3) filtered through a 0.45 µm nitrocellulose membrane. Processed water samples were dyed with Nile Red (1 mg/ml ethanol) and analyzed by fluorescence microscopy. Two water samples have been analyzed until January 2023: Casa de Adobe and Borderland finding a concentration of 5.67 particles/L and 5.93 particles/L, respectively. Three types of particles were observed: fibers, fragments, and films, fibers being the most abundant. These data, as well as the data obtained from the rest of the samples, will be analyzed by an ANOVA (α=0.05). The concentrations and types of particles found in the Río Bravo correspond with other studies on rivers associated with urban environments and agricultural activities in China, where a range of 3.67—10.7 particles/L was reported in the Wei River. Even though we are in the early stages of the study, and three new sites will be sampled and analyzed in 2023 to provide more data about this issue in the river, this presents the first evidence of microplastic pollution in the Rio Grande.

Keywords: microplastics, fresh water, Rio Bravo, fluorescence microscopy

Procedia PDF Downloads 149
595 Development of Low Calorie Jelly with Increased Content of Natural Compounds from Superfoods with No Added Sugar

Authors: Liana C. Salanță, Maria Tofană, Carmen R. Pop, Vlad Mureșan

Abstract:

The landscape of functional food is expanding very fast, due to the consumer interest for healthy natural products. Consumers nowadays demand healthy products that impart phytonutrients to encourage good health and well-being, prevent diseases, without sacrificing taste and texture. Candies are foodstuffs appreciated by all category of consumers. They are available in a range variety of forms (jellies, marshmallows, caramels, lollipops, etc.). Jelly is characterized by a gummy and chewy texture typically conferred by a hydrocolloid (gelatin, pectin). The purpose of this research was to obtain hypocaloric jelly (no added sugar) enriched with protein powder from acai, chia seeds and hemp, which are considered superfood. Peach and raspberry juice were used for obtaining functional jelly, due to the specific flavour, natural carbohydrate, natural pigments and vitamins (C, B1, PP, etc). Instead of classic hydrocolloids used in Romania for the industry of jelly, agar-agar was used in this study, due to its properties. Agar-agar is able to form gels in the aqueous medium, stronger than other gel-forming agents. High sugar concentrations or an acid environment (as is necessary with pectins) are not needed. In addition to its gelation properties, Agar-agar is considered to have important nutritional benefits, high content of fibre and has low calories. Six prototypes of jellies were obtained and evaluated by physicochemical, microbiological and sensorial analysis. For the textural profile analysis, the Brookfield CT3 Texture Analyzer, equipped with a 10kg load cell, was used. The results revealed that hypocaloric jelly can serve as a good source of bioactive compounds in the diet. The jelly is a convenient way of delivering potential health benefits of protein powder and agar-agar to a wide range of consumers.

Keywords: agar-agar, functional food, hypocaloric jelly, superfoods

Procedia PDF Downloads 126