Search results for: Computational Linguistics
279 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2
Authors: Salah Belaidi
Abstract:
We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics
Procedia PDF Downloads 32278 Computational Approach to Cyclin-Dependent Kinase 2 Inhibitors Design and Analysis: Merging Quantitative Structure-Activity Relationship, Absorption, Distribution, Metabolism, Excretion, and Toxicity, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mohamed Moussaoui, Mouna Baassi, Soukayna Baammi, Hatim Soufi, Mohammed Salah, Rachid Daoud, Achraf EL Allali, Mohammed Elalaoui Belghiti, Said Belaaouad
Abstract:
The present study aims to investigate the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the density functional theory (DFT) method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R²= 0.725, R²ₐ𝒹ⱼ= 0.653, MSE = 0.060, R²ₜₑₛₜ= 0.827, Q²𝒸ᵥ = 0.536). The energy of the highest occupied molecular orbital (EHOMO) orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Additional Thiazole derivatives were then designed and their activities and pharmacokinetic properties were predicted using the validated QSAR model. These designed molecules underwent evaluation through molecular docking (MD) and molecular dynamic (MD) simulations, with binding affinity calculated using the MMPBSA script according to a 100 ns simulation trajectory. This process aimed to study both their affinity and stability towards Cyclin-Dependent Kinase 2 (CDK2), a target protein for cancer disease treatment. The research concluded by identifying four CDK2 inhibitors - A1, A3, A5, and A6 - displaying satisfactory pharmacokinetic properties. MDs results indicated that the designed compound A5 remained stable in the active center of the CDK2 protein, suggesting its potential as an effective inhibitor for the treatment of hepatocellular carcinoma. The findings of this study could contribute significantly to the development of effective CDK2 inhibitors.Keywords: QSAR, ADMET, Thiazole, anticancer, molecular docking, molecular dynamic simulations, MMPBSA calculation
Procedia PDF Downloads 106277 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications
Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie
Abstract:
In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer
Procedia PDF Downloads 148276 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies
Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K
Abstract:
Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft
Procedia PDF Downloads 242275 Cysteine Proteases of Plants That Act on the Coagulation Cascade: Approach from Bioinformatics
Authors: Tapiwa Brine Mutsauri
Abstract:
The MEROPS system is an information resource for proteases that classifies them into clans according to their catalytic type. Within the Plant kingdom, cysteine proteases are one of the best known, as they are the catalytic type on which the first studies on plant proteases were focused. Plant cysteine proteases have a similar mechanism of action to serine proteases, and some are known to have activity on factors of the blood coagulation cascade, such as a potent antithrombotic effect, and also cause increased fibrinolysis. Of a few plant cysteine proteases, the three-dimensional structure is known, so a method of interest to be able to predict their potential activity on the factors of the coagulation cascade would be to know their structure. Phylogenetics is the study of the evolutionary relationships between biological entities, often species, individuals, or genes (which can be called taxa). It is essential to identify the evolutionary position and the possible distribution of these enzymes in the plant kingdom, particularly those that act on coagulation factors. Bioinformatic tools, such as Clustal Omega / Jalview and Mega6, can be used to create phylogenetic trees. From the results of the alignment, it can be seen that although there is a certain degree of conservation (Conservation) and consensus (Consensus) among the eleven sequences, the functionally important motifs (those corresponding to the active site), the degree of conservation and consensus is very low. We could then infer that although activity on coagulation is reported for these enzymes, linked to their structural and mechanistic similarity with serine proteases, this activity may not have a direct or primary relationship with the proteolytic activity associated with their common, poorly conserved active site in this case. This ultimately could be related to modifications in the reaction mechanism of several of the enzymes studied, which would require more detailed study. Also, below, we will deal with factors that may have a greater influence on this result. The results of this work enrich the understanding of how species (and molecular sequences in general) evolve. Through phylogenetics, we learn not only how sequences came to be the way they are today but also the general principles that allow us to predict how they will change in the future. For pharmaceutical sciences, phylogenetic selection of biologically related species can help identify closely related members of a species with compounds of pharmacological importance, such as plant cysteine proteases, in addition to identifying structural features that may influence their pharmacological activity and which can be valuable for drug design.Keywords: computational simulation, proteases, coagulation, bioinformatics
Procedia PDF Downloads 14274 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake
Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.
Abstract:
Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows
Procedia PDF Downloads 106273 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics
Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu
Abstract:
Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 363272 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 124271 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin
Abstract:
This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine
Procedia PDF Downloads 335270 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam
Authors: Mahtab Makaremi Masouleh, Günter Wozniak
Abstract:
This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam
Procedia PDF Downloads 388269 Development of a Decision Model to Optimize Total Cost in Food Supply Chain
Authors: Henry Lau, Dilupa Nakandala, Li Zhao
Abstract:
All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation
Procedia PDF Downloads 223268 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 102267 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis
Authors: Asif Arshid, Ying Huang, Denver Tolliver
Abstract:
Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade
Procedia PDF Downloads 138266 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 89265 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database
Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang
Abstract:
For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree
Procedia PDF Downloads 223264 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 116263 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios
Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu
Abstract:
Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method
Procedia PDF Downloads 165262 Selenuranes as Cysteine Protease Inhibitors: Theorical Investigation on Model Systems
Authors: Gabriela D. Silva, Rodrigo L. O. R. Cunha, Mauricio D. Coutinho-Neto
Abstract:
In the last four decades the biological activities of selenium compounds has received great attention, particularly for hypervalent derivates from selenium (IV) used as enzyme inhibitors. The unregulated activity of cysteine proteases are related to the development of several pathologies, such as neurological disorders, cardiovascular diseases, obesity, rheumatoid arthritis, cancer and parasitic infections. These enzymes are therefore a valuable target for designing new small molecule inhibitors such as selenuranes. Even tough there has been advances in the synthesis and design of new selenuranes based inhibitors, little is known about their mechanism of action. It is a given that inhibition occurs through the reaction between the thiol group of the enzyme and the chalcogen atom. However, several open questions remain about the nature of the mechanism (associative vs. dissociative) and about the nature of the reactive species in solution under physiological conditions. In this work we performed a theoretical investigation on model systems to study the possible routes of substitution reactions. Nucleophiles may be present in biological systems, our interest is centered in the thiol groups from the cysteine proteases and the hydroxyls from the aqueous environment. We therefore expect this study to clarify the possibility of a route reaction in two stages, the first consisting of the substitution of chloro atoms by hydroxyl groups and then replacing these hydroxyl groups per thiol groups in selenuranes. The structures of selenuranes and nucleophiles were optimized using density function theory along the B3LYP functional and a 6-311+G(d) basis set. Solvent was treated using the IEFPCM method as implemented in the Gaussian 09 code. Our results indicate that hydrolysis from water react preferably with selenuranes, and then, they are replaced by the thiol group. It show the energy values of -106,0730423 kcal/mol for dople substituition by hydroxyl group and 96,63078511 kcal/mol for thiol group. The solvatation and pH reduction promotes this route, increasing the energy value for reaction with hydroxil group to -50,75637672 kcal/mol and decreasing the energy value for thiol to 7,917767189 kcal/mol. Alternative ways were analyzed for monosubstitution (considering the competition between Cl, OH and SH groups) and they suggest the same route. Similar results were obtained for aliphatic and aromatic selenuranes studied.Keywords: chalcogenes, computational study, cysteine proteases, enzyme inhibitors
Procedia PDF Downloads 299261 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number
Procedia PDF Downloads 117260 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks
Authors: Paul Shize Li, Frank Alber
Abstract:
A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation
Procedia PDF Downloads 163259 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: agricultural engineering, image processing, computer vision, flower detection
Procedia PDF Downloads 328258 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard
Authors: Zhongzhong Zeng, Zichen Liang
Abstract:
In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis
Procedia PDF Downloads 80257 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 249256 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts
Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter
Abstract:
Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings
Procedia PDF Downloads 120255 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration
Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis
Abstract:
Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses
Procedia PDF Downloads 182254 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation
Procedia PDF Downloads 463253 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II
Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed
Abstract:
Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer
Procedia PDF Downloads 200252 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 20251 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce
Authors: Heiko Diefenbach, Christoph H. Glock
Abstract:
Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.Keywords: an aging workforce, error prevention, order picking, storage assignment
Procedia PDF Downloads 203250 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix
Authors: Wesley Teskey, Vedran Glavas, Julian Wegener
Abstract:
Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design
Procedia PDF Downloads 105