Search results for: technology trade effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22121

Search results for: technology trade effect

1601 The Foucaultian Relationship between Power and Knowledge: Genealogy as a Method for Epistemic Resistance

Authors: Jana Soler Libran

Abstract:

The primary aim of this paper is to analyze the relationship between power and knowledge suggested in Michel Foucault's theory. Taking into consideration the role of power in knowledge production, the goal is to evaluate to what extent genealogy can be presented as a practical method for epistemic resistance. To do so, the methodology used consists of a revision of Foucault’s literature concerning the topic discussed. In this sense, conceptual analysis is applied in order to understand the effect of the double dimension of power on knowledge production. In its negative dimension, power is conceived as an organ of repression, vetoing certain instances of knowledge considered deceitful. In opposition, in its positive dimension, power works as an organ of the production of truth by means of institutionalized discourses. This double declination of power leads to the first main findings of the present analysis: no truth or knowledge can lie outside power’s action, and power is constituted through accepted forms of knowledge. To second these statements, Foucaultian discourse formations are evaluated, presenting external exclusion procedures as paradigmatic practices to demonstrate how power creates and shapes the validity of certain epistemes. Thus, taking into consideration power’s mechanisms to produce and reproduce institutionalized truths, this paper accounts for the Foucaultian praxis of genealogy as a method to reveal power’s intention, instruments, and effects in the production of knowledge. In this sense, it is suggested to consider genealogy as a practice which, firstly, reveals what instances of knowledge are subjugated to power and, secondly, promotes aforementioned peripherical discourses as a form of epistemic resistance. In order to counterbalance these main theses, objections to Foucault’s work from Nancy Fraser, Linda Nicholson, Charles Taylor, Richard Rorty, Alvin Goldman, or Karen Barad are discussed. In essence, the understanding of the Foucaultian relationship between power and knowledge is essential to analyze how contemporary discourses are produced by both traditional institutions and new forms of institutionalized power, such as mass media or social networks. Therefore, Michel Foucault's practice of genealogy is relevant, not only for its philosophical contribution as a method to uncover the effects of power in knowledge production but also because it constitutes a valuable theoretical framework for political theory and sociological studies concerning the formation of societies and individuals in the contemporary world.

Keywords: epistemic resistance, Foucault’s genealogy, knowledge, power, truth

Procedia PDF Downloads 119
1600 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 338
1599 The Incidence of Postoperative Atrial Fibrillation after Coronary Artery Bypass Grafting in Patients with Local and Diffuse Coronary Artery Disease

Authors: Kamil Ganaev, Elina Vlasova, Andrei Shiryaev, Renat Akchurin

Abstract:

De novo atrial fibrillation (AF) after coronary artery bypass grafting (CABG) is a common complication. To date, there are no data on the possible effect of diffuse lesions of coronary arteries on the incidence of postoperative AF complications. Methods. Patients operated on-pump under hypothermic conditions during the calendar year (2020) were studied. Inclusion criteria - isolated CABG and achievement of complete myocardial revascularization. Patients with a history of AF moderate and severe valve dysfunction, hormonal thyroid pathology, initial CHF(Congestive heart failure), as well as patients with developed perioperative complications (IM, acute heart failure, massive blood loss) and deceased were excluded. Thus 227 patients were included; mean age 65±9 years; 69% were men. 89% of patients had a 3-vessel lesion of the coronary artery; the remainder had a 2-vessel lesion. Mean LV size: 3.9±0.3 cm, indexed LV volume: 29.4±5.3 mL/m2. Two groups were considered: D (n=98), patients with diffuse coronary heart disease, and L (n=129), patients with local coronary heart disease. Clinical and demographic characteristics in the groups were comparable. Rhythm assessment: continuous bedside ECG monitoring up to 5 days; ECG CT at 5-7 days after CABG; daily routine ECG registration. Follow-up period - postoperative hospital period. Results. The Median follow-up period was 9 (7;11) days. POFP (Postoperative atrial fibrillation) was detected in 61/227 (27%) patients: 34/98 (35%) in group D versus 27/129 (21%) in group L; p<0.05. Moreover, the values of revascularization index in groups D and L (3.9±0.7 and 3.8±0.5, respectively) were equal, and the mean time Cardiopulmonary bypass (CPB) (107±27 and 80±13min), as well as the mean ischemic time (67±17 and 55±11min) were significantly longer in group D (p<0.05). However, a separate analysis of these parameters in patients with and without developed AF did not reveal any significant differences in group D (CPB time 99±21.2 min, ischemic time 63±12.2 min), or in group L (CPB time 88±13.1 min, ischemic time 58.7±13.2 min). Conclusion. With the diffuse nature of coronary lesions, the incidence of AF in the hospital period after isolated CABG definitely increases. To better understand the role of severe coronary atherosclerosis in the development of POAF, it is necessary to distinguish the influence of organic features of atrial and ventricular myocardium (as a consequence of chronic coronary disease) from the features of surgical correction in diffuse coronary lesions.

Keywords: atrial fibrillation, diffuse coronary artery disease, coronary artery bypass grafting, local coronary artery disease

Procedia PDF Downloads 208
1598 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion

Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller

Abstract:

Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.

Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite

Procedia PDF Downloads 135
1597 Collaborative Program Student Community Service as a New Approach for Development in Rural Area in Case of Western Java

Authors: Brian Yulianto, Syachrial, Saeful Aziz, Anggita Clara Shinta

Abstract:

Indonesia, with a population of about two hundred and fifty million people in quantity, indicates the outstanding wealth of human resources. Hundreds of millions of the population scattered in various communities in various regions in Indonesia with the different characteristics of economic, social and unique culture. Broadly speaking, the community in Indonesia is divided into two classes, namely urban communities and rural communities. The rural communities characterized by low potential and management of natural and human resources, limited access of development, and lack of social and economic infrastructure, and scattered and isolated population. West Java is one of the provinces with the largest population in Indonesia. Based on data from the Central Bureau of Statistics in 2015 the number of population in West Java reached 46.7096 million souls spread over 18 districts and 9 cities. The big difference in geographical and social conditions of people in West Java from one region to another, especially the south to the north causing the gap is high. It is closely related to the flow of investment to promote the area. Poverty and underdevelopment are the classic problems that occur on a massive scale in the region as the effects of inequity in development. South Cianjur and Tasikmalaya area South became one of the portraits area where the existing potential has not been capable of prospering society. Tri Dharma College not only define the College as a pioneer implementation of education and research to improve the quality of human resources but also demanded to be a pioneer in the development through the concept of public service. Bandung Institute of Technology as one of the institutions of higher education to implement community service system through collaborative community work program "one of the university community" as one approach to developing villages. The program is based Community Service, where students are not only required to be able to take part in community service, but also able to develop a community development strategy that is comprehensive and integrity in cooperation with government agencies and non-government related as a real form of effort alignment potential, position and role from various parties. Areas of western Java in particular have high poverty rates and disparity. On the other hand, there are three fundamental pillars in the development of rural communities, namely economic development, community development, and the integrated infrastructure development. These pillars require the commitment of all components of community, including the students and colleges for upholding success. College’s community program is one of the approaches in the development of rural communities. ITB is committed to implement as one form of student community service as community-college programs that integrate all elements of the community which is called Kuliah Kerja Nyata-Thematic.

Keywords: development in rural area, collaborative, student community service, Kuliah Kerja Nyata-Thematic ITB

Procedia PDF Downloads 220
1596 Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics

Authors: Komal Khan, Hafsa Zaneb, Saima Masood, Muhammad Younus, Sanan Raza

Abstract:

Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects.

Keywords: cigarette smoke, probiotics, goblet cells, airspace enlargement, BALF

Procedia PDF Downloads 362
1595 The Evaluation of the Impact of Tobacco Heating System and Conventional Cigarette Smoking on Self Reported Oral Symptoms (Dry Mouth, Halitosis, Burning Sensation, Taste Changes) and Salivary Flow Rate: A Cross-sectional Study

Authors: Ella Sever, Irena Glažar, Ema Saltović

Abstract:

Conventional cigarette smoking is associated with an increased risk of oral diseases and oral symptoms such as dry mouth, bad breath, burning sensation, and changes in taste sensation. The harmful effects of conventional cigarette smoking on oral health have been extensively studied previously. However, there is a severe lack of studies investigating the effects of Tobacco Heating System (THS) on oral structures. As a preventive measure, a new alternative Tobacco THS has been developed, and according to the manufacturer, it has fewer potentially harmful and harmful constituents and consequently, lowers the risk of developing tobacco-related diseases. The aim is to analyze the effects of conventional cigarettes and THS on salivary flow rate (SFR), and self-reported oral symptoms.The stratified cross-sectional study included 90 subjects divided into three groups: THS smokers, conventional cigarette smokers, and nonsmokers. The subjects completed questionnaires on smoking habits, and symptoms (dry mouth, bad breath, burning sensation, and changes in taste sensation). SFR test were performed on each subject. The lifetime exposure to smoking was calculated using the Brinkman index (BI). Participants were 20-55 years old (median 31), and 66.67 % were female. The study included three groups of equal size (n = 20), and no statistically significant differences were found between the groups in terms of age (p = 0.632), sex (p = 1.0), and lifetime exposure to smoking (the BI) (p=0,129). Participants from the smoking group had an average of 10 (2-30) years of smoking experience in the conventional cigarettes group and 6 (1-20) years of smoking experience in the THS group. Daily consumption of cigarettes/heets per day was the same for both smokers’ groups (12(2-20) cigarettes/heets per day). The self-reported symptoms were present in 40 % of participants in the smokers group. There were significant differences in the presence of halitosis (p = 0.025) and taste sensation (p=0.013). There were no statistical differences in the presence of dry mouth (p =0.416) and burning sensation (0.7). The SFR differed between groups (p < 0.001) and was significantly lower in the THS and conventional cigarette smokers’ groups than the nonsmokers’ group. There were no significant differences between THS smokers and conventional cigarette smokers. The results of the study show that THS products have a similar effect to conventional cigarettes on oral cavity structures, especially in terms of SFR, self-reported halitosis, and changes in taste.

Keywords: oral health, tobacco products, halitosis, cigarette smoking

Procedia PDF Downloads 56
1594 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine

Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra

Abstract:

The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.

Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting

Procedia PDF Downloads 369
1593 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading

Authors: Bineet Kumar

Abstract:

Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.

Keywords: fatigue life, fatigue, fracture, concrete

Procedia PDF Downloads 93
1592 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 48
1591 Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations

Authors: Hamza Javar Magnier, Robin Curtis

Abstract:

There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients.

Keywords: protein folding, native-ensemble, conformational fluctuation, aggregation

Procedia PDF Downloads 357
1590 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia

Authors: Agus Hariyadi, Hiroatsu Fukuda

Abstract:

In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.

Keywords: façade, natural light, blind, energy

Procedia PDF Downloads 341
1589 Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters

Authors: Prakash M.N, Mahesh G, Muhammed Rafi K.M, Shiju P. Nair

Abstract:

Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight.

Keywords: reaction control thruster, propellent, orifice, chamber pressure

Procedia PDF Downloads 197
1588 The Effect of Organizational Justice on Management by Values Perception and Intention to Leave: A Study among Nurses

Authors: Arzu K. Harmanci Seren, Burcu Alacam, Serap Altuntas, Ulku Baykal

Abstract:

Organizational justice has been evaluated as a concept related to rules developed with regards to distributing gains and making decisions of distribution such as duty, goods, service, reward, punishment, fee, organizational position, opportunity or role among those working in that organization, and to social norms on which these rules are based. Studies of organizational justice are crucial for analyzing the organizational life. It is considered that organization justice will be positively influential upon organizational behaviours such as employees’ level of work satisfaction, their performance, and behaviours of organization citizenship, management by values perception, tendency towards cooperation, and towards quitting their jobs. However, when the literature related to health and nurse management is examined, authors could not reach enough findings related to the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values. For that reason, this study has been carried out with the purpose of determining the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values. The study has been carried out with 176 nurses working in a university hospital in Istanbul and a private hospital who accepted to take part in the study, and it is definitive and relation-seeking. Before the data has been collected, ethics committee approval and institutional permissions have been taken, Organizational Justice Scale, Management by Values, Intention to Leave Scale with a questionnaire including 8 questions that aims at defining the personal and professional characteristics of the nurses have been used as a means of data collection. The data collected between 1 May and 20 June 2016 have been evaluated by the researchers in a computer via definitive, relation-seeking and psychometric statistic. As a result of the study, it has been determined that most of the nurses are working in a university hospital (70.5%), that they are 30 and over (49.4%), women (91.5%), single (52.8%) and have a Bachelor’s Degree (48.3%), working in a surgery unit (17.6), have 5 year or less institutional experience (44.9%), 11 year or more professional experience. Cronbach alpha values of the scales used in this study are .94, .95 and .56. Nurses’ average scores of Organizational Justice Scale is M= 3.35±.96, Management by Values Scale is M=3.30±.74, Intention to Leave Scale is M=8.36±3.14. As a result of the analysis carried out in order to determine the influence of nurses’ perception of organizational justice upon the perception of management and the intention of quitting in accordance with the values, it has been pointed out that the Perception of Organizational Justice influenced the perception of Management by Values positively, Intention to Leave negatively.

Keywords: intention to leave, management by values, nursing, organizational justice

Procedia PDF Downloads 261
1587 Determination of Burnout Levels and Associated Factors of Teachers Working During the COVID-19 Pandemic Period

Authors: Kemal Kehan, Emine Aktas Bajalan

Abstract:

This study was carried out to determine the burnout levels and related factors of teachers working in primary schools affiliated to the Turkish Republic of Northern Cyprus (TRNC) Ministry of National Education during the COVID-19 pandemic period. The research was conducted in descriptive cross-sectional design. The population of the research consists of 1071 teachers working in 93 primary schools in 6 central districts affiliated to the TRNC Ministry of National Education in the 2021-2022 academic year. When the sample size of the study was calculated by power analysis, it was determined that 202 teachers should be reached with 95% confidence (1-α), 95% test power (1-β) and d=0.5 effect size. Within the scope of the inclusion criteria of the research, the main sample of the study consisted of 300 teachers and the baist random sampling method was used. The data were collected using the Sociodemographic Data Form consisting of 34 questions, including the sociodemographic characteristics of the teachers and the 22-item Maslach Burnout Scale (MBS). The analysis of the data was carried out using descriptive and correlational analyzes in the SPSS 22 package program. In the study, it was determined that 65% of the teachers were women, 68% were married, 84% had a bachelor's degree, 70.33% had children, and 67.67% were dependents. Regarding how teachers evaluate the COVID-19 pandemic period; 90% of them said, “I am worried about my family's health and the risk of infection”, 80% of them, “I feel that my profession does not get the value it deserves”, 75.67% of them mentioned “My hopes for the future have started to wane”, 75.33% of them say “I am worried about my own health”. It was determined that they gave the answer of, “I am worried about the issue”. It was found that the teachers' MBS total score average was 48.63±8.01, the burnout level was moderate, and the average score they got from the sub-dimensions of the scale was also moderate. It has been found that there are negative correlations between the professional satisfaction scores of the teachers during and before the COVID-19 pandemic and the scores they received from the general and sub-dimensions of MBS. It was determined that there was a statistically significant difference (p<0.05) between the scores of teachers diagnosed with COVID-19 from the scale and its sub-dimensions. As a result, it is suggested that social activities should be increased and professional development and promotion opportunities should be offered in order to ensure that teachers are satisfied with their work areas, to reduce their burnout levels or to prevent them completely.

Keywords: teachers, burnout, maslach burnout scale, pandemic, online education

Procedia PDF Downloads 62
1586 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 253
1585 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert

Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh

Abstract:

The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.

Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara

Procedia PDF Downloads 154
1584 Developing Geriatric Oral Health Network is a Public Health Necessity for Older Adults

Authors: Maryam Tabrizi, Shahrzad Aarup

Abstract:

Objectives- Understanding the close association between oral health and overall health for older adults at the right time and right place, a person, focus treatment through Project ECHO telementoring. Methodology- Data from monthly ECHO telementoring sessions were provided for three years. Sessions including case presentations, overall health conditions, considering medications, organ functions limitations, including the level of cognition. Contributions- Providing the specialist level of providing care to all elderly regardless of their location and other health conditions and decreasing oral health inequity by increasing workforce via Project ECHO telementoring program worldwide. By 2030, the number of adults in the USA over the age of 65 will increase more than 60% (approx.46 million) and over 22 million (30%) of 74 million older Americans will need specialized geriatrician care. In 2025, a national shortage of medical geriatricians will be close to 27,000. Most individuals 65 and older do not receive oral health care due to lack of access, availability, or affordability. One of the main reasons is a significant shortage of Oral Health (OH) education and resources for the elderly, particularly in rural areas. Poor OH is a social stigma, a thread to quality and safety of overall health of the elderly with physical and cognitive decline. Poor OH conditions may be costly and sometimes life-threatening. Non-traumatic dental-related emergency department use in Texas alone was over $250 M in 2016. Most elderly over the age of 65 present with at least one or multiple chronic diseases such as arthritis, diabetes, heart diseases, and chronic obstructive pulmonary disease (COPD) are at higher risk to develop gum (periodontal) disease, yet they are less likely to get dental care. In addition, most older adults take both prescription and over-the-counter drugs; according to scientific studies, many of these medications cause dry mouth. Reduced saliva flow due to aging and medications may increase the risk of cavities and other oral conditions. Most dental schools have already increased geriatrics OH in their educational curriculums, but the aging population growth worldwide is faster than growing geriatrics dentists. However, without the use of advanced technology and creating a network between specialists and primary care providers, it is impossible to increase the workforce, provide equitable oral health to the elderly. Project ECHO is a guided practice model that revolutionizes health education and increases the workforce to provide best-practice specialty care and reduce health disparities. Training oral health providers for utilizing the Project ECHO model is a logical response to the shortage and increases oral health access to the elderly. Project ECHO trains general dentists & hygienists to provide specialty care services. This means more elderly can get the care they need, in the right place, at the right time, with better treatment outcomes and reduces costs.

Keywords: geriatric, oral health, project echo, chronic disease, oral health

Procedia PDF Downloads 172
1583 Albinism in the South African Workplace: Reasonable Accommodation of a Black Person Living in a White Skin

Authors: Laetitia Fourie

Abstract:

Dangerous myths and stereotypes contribute to the fact that persons living with albinism are amongst the most vulnerable groups in society. The prevalence of albinism varies around the world and the World Health Organization estimates that around 1 in 5000 people in Sub-Saharan Africa are affected by this genetic disorder. Persons who are living with the condition usually experience a lack of melanin in their skin, eyes and hair that results in possible physical impairments such as poor eyesight and skin cancers. Being affected by such disorders and consequently classified as an albino, give way for unequal treatment which ultimately requires safeguarding these persons against unfair discrimination - not only on the basis of their race and color (or lack thereof), but also on the basis of their disability. The Constitution of the Republic of South Africa provides that everyone is equal before the law and prohibits unfair discrimination on the grounds of race, color and disability. This right is given effect to by the Employment Equity Act, which strives to eliminate unfair discrimination on similar grounds within any employment policy or practice. An essential non-discrimination measure that can be implemented in the labor market to achieve equality is the duty of reasonable accommodation that rests upon employers. However, reasonable accommodation is only introduced as an affirmative action measure in order to provide equal employment opportunities to the identified designated groups who include black people (defined to include Indians, Chinese and Colored), women and people with disabilities. Even though this duty exists, South African law does not elaborate on the scope of the duty, except for a Disability Code, which does not hold the force of law. Furthermore, in respect of applying affirmative action measures to people with disabilities, the law does not elaborate on the meaning of disability. Considering that persons living with albinism will find it difficult to show that they are black or disabled in order to be acknowledged as part of the designated groups, their access to reasonable accommodation will be limited to a great extent. This paper will aim to illustrate to which extent South African law currently fails to implement its international obligations as a State Party to the Conventions of the United Nations, and how these failures should be corrected in order to serve the needs of all South Africans, including albinos.

Keywords: albinism, disability, equality, South Africa, United Nations

Procedia PDF Downloads 185
1582 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study

Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi

Abstract:

Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.

Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation

Procedia PDF Downloads 282
1581 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns

Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè

Abstract:

Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.

Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column

Procedia PDF Downloads 349
1580 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 122
1579 Shelf Life and Overall Quality of Pretreated and Modified Atmosphere Packaged ‘Ready-To-Eat’ Pomegranate arils cv. Bhagwa Stored at 1⁰C

Authors: Sangram Dhumal, Anil Karale

Abstract:

The effect of different pretreatments and modified atmosphere packaging on the quality of minimally processed pomegranate arils of Bhagwa cultivar was evaluated during storage at 1⁰C for 16 days. Hand extracted pomegranate arils were pretreated with different antioxidants and surfactants viz., 100ppm sodium hypochlorite plus 0.5 percent ascorbic acid plus 0.5 percent citric acid, 10 and 20 percent honey solution, 0.1 percent nanosilver stipulated food grade hydrogen peroxide alone and in combination with 10 percent honey solution and control. The disinfected, rinsed and air-dried pomegranate arils were packed in polypropylene punnets (135g each) with different modified atmospheres and stored up to 16 days at 1⁰C. Changes in colour, pH, total soluble solids, sugars, anthocyanins, phenols, acidity, antioxidant activity, microbial and yeast and mold count over initial values were recorded in all the treatments under study but highest on those without antioxidant and surfactant treatments. Pretreated arils stored at 1⁰C recorded decrease in L*, b* value, pH, levels of non-reducing and total sugars, polyphenols, antioxidant activity and acceptability of arils and increase in total soluble solids, a* value, anthocyanins and microbial count. Increase in anthocyanin content was observed in modified atmosphere packaged pretreated arils stored at 1⁰C. Modified atmosphere packaging with 100 percent nitrogen recorded minimum changes in physicochemical and sensorial parameters with minimum microbial growth. Untreated arils in perforated punnets and with air (control) gave shelf life up to 6 days only. The pretreatment of arils with 10 percent honey plus 0.1 percent nanosilver stipulated food grade hydrogen peroxide and packaging in 100 percent nitrogen recorded minimum changes in physicochemical parameters. The treatment also restricted microbial growth and maintained colour, anthocyanin pigmentation, antioxidant activity and overall fresh like quality of arils. The same dipping treatment along with modified atmosphere packaging extended the shelf life of fresh ready to eat arils up to 14 to 16 days with enhanced acceptability when stored at 1⁰C.

Keywords: anthocyanin content, pomegranate, MAP, minimally processed, microbial quality, Bhagwa, shelf-life, overall quality

Procedia PDF Downloads 169
1578 Pyrazolylpyrazolines: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents

Authors: Adnan Bekhit, Eskedar Lodebo, Ariaya Hymete, Hanan Ragab, Alaa El-Din Bekhit

Abstract:

Malaria and leishmaniasis have emerged as serious universal health problems throughout history of mankind. According to the WHO 2008 malarial report, half of the world population is at risk of malarial infection with an estimate of 1 million deaths occurring annually mainly in the African region. Furthermore, 12-15 million people are infected with Leishmaniasis worldwide. Despite the continuous introduction of a large number of agents for the treatment of malaria, there is still unmet medical needs due to the emergence of resistance. Resistance has occurred for almost all therapeutic agents approved for the treatment of malaria. Accordingly, it was the aim of this work to design and synthesis a group of antimalarial-antileshmanial agents that would show inhibitory activity against chloroquine-resistant strain of Plasmodium falciparum. The synthesized compounds were designed to contain a pyrazolylpyrazoline moiety having an aromatic group (p-tolyl or p-chlorophenyl) at N1-position of one pyrazoline ring due to the reports of promising activities of such compounds. A formyl or acyl substituent was introduced at the N1-position of the other pyrazoline ring, to investigate the effect of bulkiness of acyl substituents at this position. The synthesized compounds were evaluated for their in-vivo antimalarial activity against Plasmodium berghei infected mice at dose levels of 20 and 30 mg/Kg. the two most active compounds were evaluated for their antimalarial activity against chloroquin-resistant strain (RKL9) of Plasmodium falciparum. In addition, the synthesized compounds were tested for their in-vitro antileshmanial activity against Leishmania aethiopica promastigotes and amastigotes. For both antimalarial and antileishmanial activities, compounds having an N1-p-tolyl group at the first pyrazoline ring did not require bulkiness at the second pyrazoline ring nitrogen where the compound bearing an acetyl group proved to be the most active of the whole series. On the other hand, bulkiness at the N1-position of the second pyazoline ring was necessary in case of compounds carrying the p-chlorophenyl group, where the two derivatives having an N1-butanoyl and an N1-benzoyl moieties at the second pyrazoline showed the best activity. Furthermore, the toxicity of the active compounds were tested and were proved to be non-toxic at 125, 250 and 500 mg/Kg. In addition, docking of the most active compound (having a p-tolyl group at the first pyrazoline-N and an acetyl moiety on the other pyrazoline-N) was performed against dihydrofolate reductase enzyme.

Keywords: pyrazoline derivatives, in-vivo antimalarial activity, docking, dihydrofolate reductase

Procedia PDF Downloads 340
1577 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff

Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers

Abstract:

Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.

Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development

Procedia PDF Downloads 123
1576 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement

Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar

Abstract:

The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.

Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties

Procedia PDF Downloads 185
1575 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water

Authors: Nabiyeva Jamala

Abstract:

We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.

Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide

Procedia PDF Downloads 70
1574 A Supply Chain Risk Management Model Based on Both Qualitative and Quantitative Approaches

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

In today’s business, it is well-recognized that risk is an important factor that needs to be taken into consideration before a decision is made. Studies indicate that both the number of risks faced by organizations and their potential consequences are growing. Supply chain risk management has become one of the major concerns for practitioners and researchers. Supply chain leaders and scholars are now focusing on the importance of managing supply chain risk. In order to meet the challenge of managing and mitigating supply chain risk (SCR), we must first identify the different dimensions of SCR and assess its relevant probability and severity. SCR has been classified in many different ways, and there are no consistently accepted dimensions of SCRs and several different classifications are reported in the literature. Basically, supply chain risks can be classified into two dimensions namely disruption risk and operational risk. Disruption risks are those caused by events such as bankruptcy, natural disasters and terrorist attack. Operational risks are related to supply and demand coordination and uncertainty, such as uncertain demand and uncertain supply. Disruption risks are rare but severe and hard to manage, while operational risk can be reduced through effective SCM activities. Other SCRs include supply risk, process risk, demand risk and technology risk. In fact, the disorganized classification of SCR has created confusion for SCR scholars. Moreover, practitioners need to identify and assess SCR. As such, it is important to have an overarching framework tying all these SCR dimensions together for two reasons. First, it helps researchers use these terms for communication of ideas based on the same concept. Second, a shared understanding of the SCR dimensions will support the researchers to focus on the more important research objective: operationalization of SCR, which is very important for assessing SCR. In general, fresh food supply chain is subject to certain level of risks, such as supply risk (low quality, delivery failure, hot weather etc.) and demand risk (season food imbalance, new competitors). Effective strategies to mitigate fresh food supply chain risk are required to enhance operations. Before implementing effective mitigation strategies, we need to identify the risk sources and evaluate the risk level. However, assessing the supply chain risk is not an easy matter, and existing research mainly use qualitative method, such as risk assessment matrix. To address the relevant issues, this paper aims to analyze the risk factor of the fresh food supply chain using an approach comprising both fuzzy logic and hierarchical holographic modeling techniques. This novel approach is able to take advantage the benefits of both of these well-known techniques and at the same time offset their drawbacks in certain aspects. In order to develop this integrated approach, substantial research work is needed to effectively combine these two techniques in a seamless way, To validate the proposed integrated approach, a case study in a fresh food supply chain company was conducted to verify the feasibility of its functionality in a real environment.

Keywords: fresh food supply chain, fuzzy logic, hierarchical holographic modelling, operationalization, supply chain risk

Procedia PDF Downloads 237
1573 Application of IoTs Based Multi-Level Air Quality Sensing for Advancing Environmental Monitoring in Pingtung County

Authors: Men An Pan, Hong Ren Chen, Chih Heng Shih, Hsing Yuan Yen

Abstract:

Pingtung County is located in the southernmost region of Taiwan. During the winter season, pollutants due to insufficient dispersion caused by the downwash of the northeast monsoon lead to the poor air quality of the County. Through the implementation of various control methods, including the application of permits of air pollution, fee collection of air pollution, control oil fume of catering sectors, smoke detection of diesel vehicles, regular inspection of locomotives, and subsidies for low-polluting vehicles. Moreover, to further mitigate the air pollution, additional alternative controlling strategies are also carried out, such as construction site control, prohibition of open-air agricultural waste burning, improvement of river dust, and strengthening of road cleaning operations. The combined efforts have significantly reduced air pollutants in the County. However, in order to effectively and promptly monitor the ambient air quality, the County has subsequently deployed micro-sensors, with a total of 400 IoTs (Internet of Things) micro-sensors for PM2.5 and VOC detection and 3 air quality monitoring stations of the Environmental Protection Agency (EPA), covering 33 townships of the County. The covered area has more than 1,300 listed factories and 5 major industrial parks; thus forming an Internet of Things (IoTs) based multi-level air quality monitoring system. The results demonstrate that the IoTs multi-level air quality sensors combined with other strategies such as “sand and gravel dredging area technology monitoring”, “banning open burning”, “intelligent management of construction sites”, “real-time notification of activation response”, “nighthawk early bird plan with micro-sensors”, “unmanned aircraft (UAV) combined with land and air to monitor abnormal emissions”, and “animal husbandry odour detection service” etc. The satisfaction improvement rate of air control, through a 2021 public survey, reached a high percentage of 81%, an increase of 46% as compared to 2018. For the air pollution complaints for the whole year of 2021, the total number was 4213 in contrast to 7088 in 2020, a reduction rate reached almost 41%. Because of the spatial-temporal features of the air quality monitoring IoTs system by the application of microsensors, the system does assist and strengthen the effectiveness of the existing air quality monitoring network of the EPA and can provide real-time control of the air quality. Therefore, the hot spots and potential pollution locations can be timely determined for law enforcement. Hence, remarkable results were obtained for the two years. That is, both reduction of public complaints and better air quality are successfully achieved through the implementation of the present IoTs system for real-time air quality monitoring throughout Pingtung County.

Keywords: IoT, PM, air quality sensor, air pollution, environmental monitoring

Procedia PDF Downloads 72
1572 Management Tools for Assessment of Adverse Reactions Caused by Contrast Media at the Hospital

Authors: Pranee Suecharoen, Ratchadaporn Soontornpas, Jaturat Kanpittaya

Abstract:

Background: Contrast media has an important role for disease diagnosis through detection of pathologies. Contrast media can, however, cause adverse reactions after administration of its agents. Although non-ionic contrast media are commonly used, the incidence of adverse events is relatively low. The most common reactions found (10.5%) were mild and manageable and/or preventable. Pharmacists can play an important role in evaluating adverse reactions, including awareness of the specific preparation and the type of adverse reaction. As most common types of adverse reactions are idiosyncratic or pseudo-allergic reactions, common standards need to be established to prevent and control adverse reactions promptly and effectively. Objective: To measure the effect of using tools for symptom evaluation in order to reduce the severity, or prevent the occurrence, of adverse reactions from contrast media. Methods: Retrospective review descriptive research with data collected on adverse reactions assessment and Naranjo’s algorithm between June 2015 and May 2016. Results: 158 patients (10.53%) had adverse reactions. Of the 1,500 participants with an adverse event evaluation, 137 (9.13%) had a mild adverse reaction, including hives, nausea, vomiting, dizziness, and headache. These types of symptoms can be treated (i.e., with antihistamines, anti-emetics) and the patient recovers completely within one day. The group with moderate adverse reactions, numbering 18 cases (1.2%), had hypertension or hypotension, and shortness of breath. Severe adverse reactions numbered 3 cases (0.2%) and included swelling of the larynx, cardiac arrest, and loss of consciousness, requiring immediate treatment. No other complications under close medical supervision were recorded (i.e., corticosteroids use, epinephrine, dopamine, atropine, or life-saving devices). Using the guideline, therapies are divided into general and specific and are performed according to the severity, risk factors and ingestion of contrast media agents. Patients who have high-risk factors were screened and treated (i.e., prophylactic premedication) for prevention of severe adverse reactions, especially those with renal failure. Thus, awareness for the need for prescreening of different risk factors is necessary for early recognition and prompt treatment. Conclusion: Studying adverse reactions can be used to develop a model for reducing the level of severity and setting a guideline for a standardized, multidisciplinary approach to adverse reactions.

Keywords: role of pharmacist, management of adverse reactions, guideline for contrast media, non-ionic contrast media

Procedia PDF Downloads 296