Search results for: transition regression model
18142 The Relationship between Corporate Governance and Intellectual Capital Disclosure: Malaysian Evidence
Authors: Rabiaal Adawiyah Shazali, Corina Joseph
Abstract:
The disclosure of Intellectual Capital (IC) information is getting more vital in today’s era of a knowledge-based economy. Companies are advised by accounting bodies to enhance IC disclosure which complements the conventional financial disclosures. There are no accounting standards for Intellectual Capital Disclosure (ICD), therefore the disclosure is entirely voluntary. Hence, this study aims to investigate the extent of ICD and to examine the relationship between corporate governance and ICD in Malaysia. This study employed content analysis of 100 annual reports by the top 100 public listed companies in Malaysia during 2012. The uniqueness of this study lies on its underpinning theory used where it applies the institutional isomorphism theory to support the effect of the attributes of corporate governance towards ICD. In order to achieve the stated objective, multiple regression analysis were employed to conduct this study. From the descriptive statistics, it was concluded that public listed companies in Malaysia have increased their awareness towards the importance of ICD. Furthermore, results from the multiple regression analysis confirmed that corporate governance affects the company’s ICD where the frequency of audit committee meetings and the board size has positively influenced the level of ICD in companies. Findings from this study would provide an incentive for companies in Malaysia to enhance the disclosure of IC. In addition, this study would assist Bursa Malaysia and other regulatory bodies to come up with a proper guideline for the disclosure of IC.Keywords: annual report, content analysis, corporate governance, intellectual capital disclosure
Procedia PDF Downloads 21518141 Willingness of Muslim Owners/Managers of Smes to Seek Capital Market Financing
Authors: Bashir Tijjani Abubakar
Abstract:
Capital markets play a very important role in financing of private and public institutions in both developing and developed economies. Unfortunately, small and medium enterprises (SMEs) in those economies are yet to fully utilize the markets to finance their long financial needs. This study assesses the factors that influence the decisions of the Muslim Owners/Managers of SMEs in Nigeria and specifically in Kano to seek capital market financing. Logit regression model was used to assess the factors such as control of ownership, perception of the owners/managers on the interest rate charged by commercial banks, educational qualification, size, and age of the SMEs. The study reveals that all the factors have significant positive influence on the willingness of the SMEs Owners/Managers to seek capital market financing. The study recommends educating the Owners/Managers on the operations and products of the markets.Keywords: capital markets, capital market financing, small and medium enterprise and willingness, size of an enterprise, age of an enterprise and control of ownership
Procedia PDF Downloads 27818140 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 15818139 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication
Authors: M. Guemmadi, A. Ouibrahim
Abstract:
This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity
Procedia PDF Downloads 54218138 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)
Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali
Abstract:
The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking
Procedia PDF Downloads 12218137 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 31618136 A Block World Problem Based Sudoku Solver
Authors: Luciana Abednego, Cecilia Nugraheni
Abstract:
There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems
Procedia PDF Downloads 34118135 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.Keywords: case based reasoning, classification, expert's knowledge, hybrid model
Procedia PDF Downloads 36718134 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs
Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo
Abstract:
Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration
Procedia PDF Downloads 44818133 Building a Model for Information Literacy Education in School Settings
Authors: Tibor Koltay
Abstract:
Among varied new literacies, information literacy is not only the best-known one but displays numerous models and frameworks. Nonetheless, there is still a lack of its complex theoretical model that could be applied to information literacy education in public (K12) education, which often makes use of constructivist approaches. This paper aims to present the main features of such a model. To develop a complex model, the literature and practice of phenomenographic and sociocultural theories, as well as discourse analytical approaches to information literacy, have been reviewed. Besides these constructivist and expressive based educational approaches, the new model is intended to include the innovation of coupling them with a cognitive model that takes developing informational and operational knowledge into account. The convergences between different literacies (information literacy, media literacy, media and information literacy, and data literacy) were taken into account, as well. The model will also make use of a three-country survey that examined secondary school teachers’ attitudes to information literacy. The results of this survey show that only a part of the respondents feel properly prepared to teach information literacy courses, and think that they can teach information literacy skills by themselves, while they see a librarian as an expert in educating information literacy. The use of the resulting model is not restricted to enhancing theory. It is meant to raise the level of awareness about information literacy and related literacies, and the next phase of the model’s development will be a pilot study that verifies the usefulness of the methodology for practical information literacy education in selected Hungarian secondary schools.Keywords: communication, data literacy, discourse analysis, information literacy education, media and information literacy media literacy, phenomenography, public education, sociocultural theory
Procedia PDF Downloads 14718132 Critical Parameters of a Square-Well Fluid
Authors: Hamza Javar Magnier, Leslie V. Woodcock
Abstract:
We report extensive molecular dynamics (MD) computational investigations into the thermodynamic description of supercritical properties for a model fluid that is the simplest realistic representation of atoms or molecules. The pair potential is a hard-sphere repulsion of diameter σ with a very short attraction of length λσ. When λ = 1.005 the range is so short that the model atoms are referred to as “adhesive spheres”. Molecular dimers, trimers …etc. up to large clusters, or droplets, of many adhesive-sphere atoms are unambiguously defined. This then defines percolation transitions at the molecular level that bound the existence of gas and liquid phases at supercritical temperatures, and which define the existence of a supercritical mesophase. Both liquid and gas phases are seen to terminate at the loci of percolation transitions, and below a second characteristic temperature (Tc2) are separated by the supercritical mesophase. An analysis of the distribution of clusters in gas, meso- and liquid phases confirms the colloidal nature of this mesophase. The general phase behaviour is compared with both experimental properties of the water-steam supercritical region and also with formally exact cluster theory of Mayer and Mayer. Both are found to be consistent with the present findings that in this system the supercritical mesophase narrows in density with increasing T > Tc and terminates at a higher Tc2 at a confluence of the primary percolation loci. The expended plot of the MD data points in the mesophase of 7 critical and supercritical isotherms in highlight this narrowing in density of the linear-slope region of the mesophase as temperature is increased above the critical. This linearity in the mesophase implies the existence of a linear combination rule between gas and liquid which is an extension of the Lever rule in the subcritical region, and can be used to obtain critical parameters without resorting to experimental data in the two-phase region. Using this combination rule, the calculated critical parameters Tc = 0.2007 and Pc = 0.0278 are found be agree with the values found by of Largo and coworkers. The properties of this supercritical mesophase are shown to be consistent with an alternative description of the phenomenon of critical opalescence seen in the supercritical region of both molecular and colloidal-protein supercritical fluids.Keywords: critical opalescence, supercritical, square-well, percolation transition, critical parameters.
Procedia PDF Downloads 52118131 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 47818130 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 4518129 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System
Authors: Asif Mahmood, Yousef Alzeghayer
Abstract:
The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics
Procedia PDF Downloads 21218128 A Correlations Study on Nursing Staff's Shifts Systems, Workplace Fatigue, and Quality of Working Life
Authors: Jui Chen Wu, Ming Yi Hsu
Abstract:
Background and Purpose: Shift work of nursing staff is inevitable in hospital to provide continuing medical care. However, shift work is considered as a health hazard that may cause physical and psychological problems. Serious workplace fatigue of nursing shift work might impact on family, social and work life, moreover, causes serious reduction of quality of medical care, or even malpractice. This study aims to explore relationships among nursing staff’s shift, workplace fatigue and quality of working life. Method: Structured questionnaires were used in this study to explore relationships among shift work, workplace fatigue and quality of working life in nursing staffs. We recruited 590 nursing staffs in different Community Teaching hospitals in Taiwan. Data analysed by descriptive statistics, single sample t-test, single factor analysis, Pearson correlation coefficient and hierarchical regression, etc. Results: The overall workplace fatigue score is 50.59 points. In further analysis, the score of personal burnout, work-related burnout, over-commitment and client-related burnout are 57.86, 53.83, 45.95 and 44.71. The basic attributes of nursing staff are significantly different from those of workplace fatigue with different ages, licenses, sleeping quality, self-conscious health status, number of care patients of chronic diseases and number of care people in the obstetric ward. The shift variables revealed no significant influence on workplace fatigue during the hierarchical regression analysis. About the analysis on nursing staff’s basic attributes and shift on the quality of working life, descriptive results show that the overall quality of working life of nursing staff is 3.23 points. Comparing the average score of the six aspects, the ranked average score are 3.47 (SD= .43) in interrelationship, 3.40 (SD= .46) in self-actualisation, 3.30 (SD= .40) in self-efficacy, 3.15 (SD= .38) in vocational concept, 3.07 (SD= .37) in work aspects, and 3.02 (SD= .56) in organization aspects. The basic attributes of nursing staff are significantly different from quality of working life in different marriage situations, education level, years of nursing work, occupation area, sleep quality, self-conscious health status and number of care in medical ward. There are significant differences between shift mode and shift rate with the quality of working life. The results of the hierarchical regression analysis reveal that one of the shifts variables 'shift mode' which does affect staff’s quality of working life. The workplace fatigue is negatively correlated with the quality of working life, and the over-commitment in the workplace fatigue is positively related to the vocational concept of the quality of working life. According to the regression analysis of nursing staff’s basic attributes, shift mode, workplace fatigue and quality of working life related shift, the results show that the workplace fatigue has a significant impact on nursing staff’s quality of working life. Conclusion: According to our study, shift work is correlated with workplace fatigue in nursing staffs. This results work as important reference for human resources management in hospitals to establishing a more positive and healthy work arrangement policy.Keywords: nursing staff, shift, workplace fatigue, quality of working life
Procedia PDF Downloads 27218127 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision
Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.
Abstract:
To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model
Procedia PDF Downloads 18918126 A Mathematical Model for Hepatitis B Virus Infection and the Impact of Vaccination on Its Dynamics
Authors: T. G. Kassem, A. K. Adunchezor, J. P. Chollom
Abstract:
This paper describes a mathematical model developed to predict the dynamics of Hepatitis B virus (HBV) infection and to evaluate the potential impact of vaccination and treatment on its dynamics. We used a compartmental model expressed by a set of differential equations based on the characteristic of HBV transmission. With these, we find the threshold quantity R0, then find the local asymptotic stability of disease free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease free and endemic equilibrium.Keywords: hepatitis B virus, epidemiology, vaccination, mathematical model
Procedia PDF Downloads 32418125 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers, new model
Procedia PDF Downloads 46518124 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 24218123 Application of the EU Commission Waste Management Methodology Level(s) to a Construction and a Demolition in North-West Romania.
Authors: Valean Maria
Abstract:
Construction and demolition waste management is a timely topic, due to the urgency of its transition to sustainability. This sector is responsible for over a third of the waste generated in the E.U., while the legislation requires a proportion of at least 70% preparation for reuse and recycle, excluding backfilling. To this end, the E.U. Commission has provided the Level(s) methodology, allowing for the standardized planning and reporting of waste quantities across all levels of the construction process, from the architecture, to the demolition, from the estimation stage, to the actual measurements at the end of the operations. We applied Level(s) for the first time to the Romanian context, a developing E.U. country in which illegal dumping of contruction waste in nature and landfills, are still common practice. We performed the desk study of the buildings’ documents, followed by field studies of the sites, and finally the insertion and calculation of statistical data of the construction and demolition waste. We learned that Romania is far from the E.U. average in terms of the initial estimations of waste, with some numbers being higher, others lower, and that the price of evacuation to landfills is significantly lower in the developing country, a possible barrier to adopting the new regulations. Finally, we found that concrete is the predominant type waste, in terms of quantity as well as cost of disposal. Further directions of research are provided, such as mapping out all of the alternative facilities in the region and the calculation of the financial costs and of the CO2 footprint, for preparing and delivering waste sustainably, for a more sound and locally adapted model of waste management.Keywords: construction, waste, management, levels, EU
Procedia PDF Downloads 7718122 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control
Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed
Abstract:
This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model
Procedia PDF Downloads 44418121 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 12718120 Prep: Pause, Reset, Establish Expectations, and Proceed. A Practical Approach for Classroom Transitions
Authors: Shane-Anthony Smith
Abstract:
Teachers across grade levels and content areas face a myriad of challenges in the classroom. From inconsistent attendance to disruptive behaviors, these challenges can have a dire impact on the educational space, untimely leading to a loss of instructional time and student disenfranchisement from learning. While these challenges are not new to the educational landscape, the post-COVID classroom has, in many instances, been more severely impacted by behaviors that are not conducive to learning. Despite the mounting challenges, the role of the teacher remains unchanged - that is, to create and maintain a safe environment that is conducive to learning and promotes successful learning outcomes. Accomplishing this feat is no easy task. Yet, there are steps teachers can - indeed, must - take to better set themselves and their students up for success. The key to achieving this success is effective classroom transitions. This paper presents a four-step approach for teachers to engage in successful classroom transitions to promote meaningful student engagement and active positive learning outcomes. The transition strategy I will explore is called PREP (Pause, Reset, Establish Expectations, and Proceed). I developed this strategy in my work as a Residency Director for my university’s teacher residency program. In this role, I am tasked with coaching emerging teachers and their in-service teaching mentors in the field, as well as providing mentorship to special education resident teachers pursuing teaching degrees in the program. As a teacher educator, being in Middle and High school classrooms provides an intricate and critical understanding of the challenges, opportunities, and possibilities in the classroom. For this paper, I will explore how teachers can optimize the opportunities PREP provides to keep students engaged and, thus, improve student achievement. I will describe the approach, explain its use, and provide case-study examples of its classroom application.Keywords: classroom management, teaching strategies, student engagement, classroom transition
Procedia PDF Downloads 7918119 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics
Authors: Abhiyan Paudel, Maheshwaran M Pillai
Abstract:
This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing
Procedia PDF Downloads 53118118 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management
Authors: Mpho Agnes Mbeo, Patient Rambe
Abstract:
The thirteenth year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a culture of research that fully embraces a strong ethos of conducting world-class research needed to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, comprising four heads of departments, three prolific established researchers, and three emerging researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the endowment of an ideal institutional research environment (comprising strong internet networks, persistent connectivity on and off campus), research peer mentorship, and growing publication outputs should be matched by a coherent research incentive culture and strong research leadership. This is critical to building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.Keywords: Central University of Technology, performance, publication, research culture, university
Procedia PDF Downloads 17318117 Gender-Specific Association between Obstructive Sleep Apnea and Cognitive Impairment among Adults: A Population-based UK Biobank Study
Authors: Ke Qiu, Minzi Mao, Jianjun Ren, Yu Zhao
Abstract:
Although much has been done to investigate the influence of obstructive sleep apnea (OSA) on cognitive function, little attention has been paid to the role which gender differences play in this association. In the present study, we aim to explore the gender-specific association between OSA and cognitive impairment. Participants from UK biobank who have completed at least one of the five baseline cognitive tests (visuospatial memory, prospective memory, fluid intelligence, short numeric memory and reaction time) were included and were further categorized into three groups: (1) OSA, (2) self-reported snoring but without OSA, and (3) healthy controls (without OSA or snoring). Multivariable regression analysis was performed to examine the associations among snoring, OSA and performance of each of the five cognitive domains. A total of 267,889 participants (47% male, mean age: 57 years old) were included in our study. In the multivariable regression analysis, female participants in the OSA group had a higher risk of having poor prospective memory (OR: 1.24, 95% CI: 1.02~1.50, p = 0.03). Meanwhile, among female participants, OSA were inversely associated with the performances of fluid intelligence (β: -0.29, 95% CI: -0.46~-0.13, p < 0.001) and short-numeric memory (β: -0.14, 95% CI: -0.35~0.08, p = 0.02). In contrast, among male participants, no significant association was observed between OSA and impairment of the five cognitive domains. Overall, OSA was significantly associated with cognitive impairment in female participants rather than in male participants, indicating that more special attention and timely interventions should be given to female OSA patients to prevent further cognitive impairment.Keywords: obstructive sleep apnea (OSA), cognitive impairment, gender-specific association, UK biobank
Procedia PDF Downloads 15118116 Optimization of Effecting Parameters for the Removal of H₂S Gas in Self Priming Venturi Scrubber Using Response Surface Methodology
Authors: Manisha Bal, B. C. Meikap
Abstract:
Highly toxic and corrosive gas H₂S is recognized as one of the hazardous air pollutants which has significant effect on the human health. Abatement of H₂S gas from the air is very necessary. H₂S gas is mainly released from the industries like paper and leather industry as well as during the production of crude oil, during wastewater treatment, etc. But the emission of H₂S gas in high concentration may cause immediate death while at lower concentrations can cause various respiratory problems. In the present study, self priming venturi scrubber is used to remove the H₂S gas from the air. Response surface methodology with central composite design has been chosen to observe the effect of process parameters on the removal efficiency of H₂S. Experiments were conducted by varying the throat gas velocity, liquid level in outer cylinder, and inlet H₂S concentration. ANOVA test confirmed the significant effect of parameters on the removal efficiency. A quadratic equation has been obtained which predicts the removal efficiency very well. The suitability of the developed model has been judged by the higher R² square value which obtained from the regression analysis. From the investigation, it was found that the throat gas velocity has most significant effect and inlet concentration of H₂S has less effect on H₂S removal efficiency.Keywords: desulfurization, pollution control, response surface methodology, venturi scrubber
Procedia PDF Downloads 13718115 Combustion Analysis of Suspended Sodium Droplet
Authors: T. Watanabe
Abstract:
Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.Keywords: analysis, combustion, droplet, sodium
Procedia PDF Downloads 21118114 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model
Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.
Abstract:
This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM
Procedia PDF Downloads 39218113 Patient Reported Outcome Measures Post Implant Based Reconstruction Basildon Hospital
Authors: Danny Fraser, James Zhang
Abstract:
Aim of the study: Our study aims to identify any statistically significant evidence as it relates to PROMs for mastectomy and implant-based reconstruction to guide future surgical management. Method: The demographic, pre and post-operative treatment and implant characteristics were collected of all patients at Basildon hospital who underwent breast reconstruction from 2017-2023. We used the Breast-Q psychosocial well-being, physical well-being, and satisfaction with breasts scales. An Independent t-test was conducted for each group, and linear regression of age and implant size. Results: 69 patients were contacted, and 39 PROMs returned. The mean age of patients was 57.6. 40% had smoked before, and 40.8% had BMI>30. 29 had pre-pectoral placement, and 40 had subpectoral placement. 17 had smooth implants, and 52 textured. Sub pectoral placement was associated with higher (75.7 vs. 61.9 p=0.046) psychosocial scores than pre pectoral, and textured implants were associated with a lower physical score than the smooth surface (34.7 VS 50.2 P=0.046). On linear regression, age was positively associated (p=0.007) with psychosocial score. Conclusion: We present a large cohort of patients who underwent breast reconstruction. Understanding the PROMs of these procedures can guide clinicians, patients and policy makers to be more informed of the course of rehabilitation of these operations. Significance: We have found that from a patient perspective subpectoral implant placement was associated with a statistically significant improvement in psychosocial scores.Keywords: breast surgery, mastectomy, breast implants, oncology
Procedia PDF Downloads 61