Search results for: power network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10399

Search results for: power network

8389 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm

Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy

Abstract:

This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.

Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization

Procedia PDF Downloads 442
8388 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 508
8387 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 147
8386 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network

Authors: A. Sri Janani, K. Immanuel Arokia James

Abstract:

Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.

Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique

Procedia PDF Downloads 359
8385 Exploiting Non-Uniform Utility of Computing: A Case Study

Authors: Arnab Sarkar, Michael Huang, Chuang Ren, Jun Li

Abstract:

The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact.

Keywords: approximate computing, landau damping, non uniform utility computing, particle-in-cell

Procedia PDF Downloads 259
8384 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 219
8383 Electromagnetic Simulation of Underground Cable Perforation by Nail

Authors: Ahmed Nour El Islam Ayad, Tahar Rouibah, Wafa Krika, Houari Boudjella, Larab Moulay, Farid Benhamida, Selma Benmoussa

Abstract:

The purpose of this study is to evaluate the electromagnetic field of an underground cable of very high voltage perforated by nail. The aim of this work shows a numerical simulation of the electromagnetic field of 400 kV line after perforation through a ferrous nail in four positions for the pinch pin at different distances. From results for a longitudinal section, we observe and evaluate the distribution and the variation of the electromagnetic field in the cable and the earth. When the nail approaches the underground power cable, the distribution of the magnetic field changes and takes several forms, the magnetic field increase and become very important when the nail breaks the metal screen and will produce a significant leak of the electric field, characterized by a large electric arc and or electric discharge to earth and then a fault in the electrical network. These electromagnetic analysis results help to detect defects in underground cables.

Keywords: underground, electromagnetic, nail, defect

Procedia PDF Downloads 231
8382 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
8381 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules

Authors: Mohsen Maraoui

Abstract:

In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.

Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing

Procedia PDF Downloads 141
8380 Traffic Study and Proposal for a Bike Lane for the University of the Basque Country

Authors: Elisabete Alberdi, Irantzu Álvarez, Laura Girón

Abstract:

The objective of this work is to propose a cycle path or network of paths to the UPV/EHU Campus in Leioa. The proposal will be presented from the point of view of sustainability. In order to achieve this, the roads that are already built will be used, and the road or network will be proposed to be built with the least amount of money possible. To select the most suitable route for the bike lane, various sources of information have been used. Through this data, we analyse the transport infrastructure and the mobility around the UPV/EHU Campus in Leioa. This work aims to satisfy the mobility needs of users on the University Campus to contribute to the sustainability of the campus.

Keywords: cycle lane, sustainability, accessibility, transport, agenda 2030

Procedia PDF Downloads 228
8379 A Control Model for the Dismantling of Industrial Plants

Authors: Florian Mach, Eric Hund, Malte Stonis

Abstract:

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Keywords: dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics

Procedia PDF Downloads 304
8378 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).

Keywords: mininet, OpenFlow, POX controller, SDN

Procedia PDF Downloads 235
8377 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 198
8376 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues

Authors: Ayşe Dilek Maden

Abstract:

For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.

Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph

Procedia PDF Downloads 366
8375 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
8374 Evaluation of a Method for the Virtual Design of a Software-based Approach for Electronic Fuse Protection in Automotive Applications

Authors: Dominic Huschke, Rudolf Keil

Abstract:

New driving functionalities like highly automated driving have a major impact on the electrics/electronics architecture of future vehicles and inevitably lead to higher safety requirements. Partly due to these increased requirements, the vehicle industry is increasingly looking at semiconductor switches as an alternative to conventional melting fuses. The protective functionality of semiconductor switches can be implemented in hardware as well as in software. A current approach discussed in science and industry is the implementation of a model of the protected low voltage power cable on a microcontroller to calculate its temperature. Here, the information regarding the current is provided by the continuous current measurement of the semiconductor switch. The signal to open the semiconductor switch is provided by the microcontroller when a previously defined limit for the temperature of the low voltage power cable is exceeded. A setup for the testing of the described principle for electronic fuse protection of a low voltage power cable is built and successfullyvalidated with experiments afterwards. Here, the evaluation criterion is the deviation of the measured temperature of the low voltage power cable from the specified limit temperature when the semiconductor switch is opened. The analysis is carried out with an assumed ambient temperature as well as with a measured ambient temperature. Subsequently, the experimentally performed investigations are simulated in a virtual environment. The explicit focus is on the simulation of the behavior of the microcontroller with an implemented model of a low voltage power cable in a real-time environment. Subsequently, the generated results are compared with those of the experiments. Based on this, the completely virtual design of the described approach is assumed to be valid.

Keywords: automotive wire harness, electronic fuse protection, low voltage power cable, semiconductor-based fuses, software-based validation

Procedia PDF Downloads 105
8373 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 144
8372 Management of Fitness-For-Duty for Human Error Prevention in Nuclear Power Plants

Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee

Abstract:

For the past several decades, not a few researchers have warned that even a trivial human error may result in unexpected accidents, especially in Nuclear Power Plants. To prevent accidents in Nuclear Power Plants, it is quite indispensable to make any factors under the effective control that may raise the possibility of human errors for accident prevention. This study aimed to develop a risk management program, especially in the sense that guaranteeing Fitness-for-Duty (FFD) of human beings working in Nuclear Power Plants. Throughout a literal survey, it was found that work stress and fatigue are major psychophysical factors requiring sophisticated management. A set of major management factors related to work stress and fatigue was through repetitive literal surveys and classified into several categories. To maintain the fitness of human workers, a 4-level – individual worker, team, staff within plants, and external professional - approach was adopted for FFD management program. Moreover, the program was arranged to envelop the whole employment cycle from selection and screening of workers, job allocation, and job rotation. Also, a managerial care program was introduced for employee assistance based on the concept of Employee Assistance Program (EAP). The developed program was reviewed with repetition by ex-operators in nuclear power plants, and assessed in the affirmative. As a whole, responses implied additional treatment to guarantee high performance of human workers not only in normal operations but also in emergency situations. Consequently, the program is under administrative modification for practical application.

Keywords: fitness-for-duty (FFD), human error, work stress, fatigue, Employee-Assistance-Program (EAP)

Procedia PDF Downloads 302
8371 Ex (War) Machina: Arab Spring

Authors: Deniz Alca

Abstract:

This research aims to study the themes of autonomy, democracy and the legitimacy of power under the headline of Arab Spring. After the first wave of Arab Spring, among the frequently mentioned ideals of self-recognition, awakening, democracy, autonomy, freedom etc. main concern of the border neighbors and the western governments was to see a “legitimate power.” Although the metaphor of spring was still pointing at emancipation, the principal focus was mostly not on the people but on the governments. So the question of what makes a government legitimate has come to the forefront. However, democracy and freedom, seems to be the main subject matters of the discussions, this rush about establishment of “legitimate governments” lead other countries, to indulge or worse endorse armed oppositionists. So essence of “power” changed from legitimate to rulership. It seems that the civil initiative or autonomy and clearly democracy are still far away from us. The need to a savior is overpowering. This cultural and traditional and almost hereditary miss orientation of the people, both the ones who are playing the role of god and the ones who believed the inevitable need to be freed by someone else, seems to be leading the Arabs to a new autocracy or worse. Middle East is waiting for the ex machina to operate. But what it gets is a spreading warfare. This darkness falling down on Middle East under the concept of spring may be explained by the confrontation of the concepts of emancipation and liberation. So the question is, if the era of emancipation really over or is there still a chance for autonomy and grassroots democracy operating as constituent power?

Keywords: autonomy, awakening, civil initiative, democracy, emancipation, legitimacy, liberation

Procedia PDF Downloads 405
8370 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 112
8369 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine

Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi

Abstract:

Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.

Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC

Procedia PDF Downloads 589
8368 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
8367 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 380
8366 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions

Authors: A. Majczak, G. Baranski, K. Pietrykowski

Abstract:

Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.

Keywords: aircraft, diesel, engine testing, opposed piston

Procedia PDF Downloads 154
8365 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter

Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.

Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic

Procedia PDF Downloads 604
8364 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 380
8363 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 401
8362 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments

Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh

Abstract:

GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.

Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management

Procedia PDF Downloads 119
8361 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 97
8360 Performance Analysis of Scalable Secure Multicasting in Social Networking

Authors: R. Venkatesan, A. Sabari

Abstract:

Developments of social networking internet scenario are recommended for the requirements of scalable, authentic, secure group communication model like multicasting. Multicasting is an inter network service that offers efficient delivery of data from a source to multiple destinations. Even though multicast has been very successful at providing an efficient and best-effort data delivery service for huge groups, it verified complex process to expand other features to multicast in a scalable way. Separately, the requirement for secure electronic information had become gradually more apparent. Since multicast applications are deployed for mainstream purpose the need to secure multicast communications will become significant.

Keywords: multicasting, scalability, security, social network

Procedia PDF Downloads 292