Search results for: linear predictive coding (LPC)
2819 Cultural Works Interacting with the Generational Aesthetic Gap between Gen X and Gen Z in China: A Qualitative Study
Authors: Qianyu Zhang
Abstract:
The spread of digital technology in China has worsened the generation gap and intergenerational competition for cultural and aesthetic discourse. Meanwhile, the increased accessibility of cultural works has encouraged the sharing and inheritance of collective cultural memories between generations. However, not each cultural work can engage positively with efforts to bridge intergenerational aesthetic differences. This study argues that in contemporary China, where new media and the Internet are widely available, featured cultural works have more potential to help enhance the cultural aesthetic consensus among different generations, thus becoming an effective countermeasure to narrow the intergenerational aesthetic rift and cultural discontinuity. Specifically, the generational aesthetic gap is expected to be bridged or improved through the shared appreciation or consumption of cultural works that meet certain conditions by several generations. In-depth interviews of Gen X and Gen Z (N=15, respectively) in China uncovered their preferences and commonalities for cultural works and shared experiences in appreciating them. Results demonstrate that both generations’ shared appreciation of cultural work is a necessary but insufficient condition for its effective response to the generational aesthetic gap. Coding analysis rendered six dimensions that cultural works with the potential to bridge the intergenerational aesthetic divide should satisfy simultaneously: genre, theme, content, elements, quality, and accessibility. Cultural works that engage multiple senses/ compound realistic, domestic and contemporary cultural memories/ contain the narrative of family life and nationalism/ include more elements familiar to the previous generation/ are superb-produced and unaffected/ are more accessible better promote intergenerational aesthetic exchange and value recognition. Moreover, compared to the dilemma of the previous generation facing the aesthetic gap, the later generation plays a crucial role in bridging the generational aesthetic divide.Keywords: cultural works, generation gap, generation X, generation Z, cultural memory
Procedia PDF Downloads 1602818 Quantile Coherence Analysis: Application to Precipitation Data
Authors: Yaeji Lim, Hee-Seok Oh
Abstract:
The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.Keywords: coherence, cross periodogram, spectrum, quantile
Procedia PDF Downloads 3952817 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 222816 Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes
Authors: Jamel Slaughter
Abstract:
Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade.Keywords: cognitive development, early continuous father involvement, middle childhood, rule-breaking behavior
Procedia PDF Downloads 3052815 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 1172814 Investigating the Indoor Air Quality of the Respiratory Care Wards
Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen
Abstract:
Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol
Procedia PDF Downloads 1112813 Predictive Value of Primary Tumor Depth for Cervical Lymphadenopathy in Squamous Cell Carcinoma of Buccal Mucosa
Authors: Zohra Salim
Abstract:
Objective: To access the relationship of primary tumor thickness with cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa. Methodology: A cross-sectional observational study was carried out on 80 Patients with biopsy-proven oral squamous cell carcinoma of buccal mucosa at Dow University of Health Sciences. All the study participants were treated with wide local excision of the primary tumor with elective neck dissection. Patients with prior head and neck malignancy or those with prior radiotherapy or chemotherapy were excluded from the study. Data was entered and analyzed on SPSS 21. Chi-squared test with 95% C.I and 80% power of the test was used to evaluate the relationship of tumor depth with cervical lymph nodes. Results: 50 participants were male, and 30 patients were female. 30 patients were in the age range of 20-40 years, 36 patients in the range of 40-60 years, while 14 patients were beyond age 60 years. Tumor size ranged from 0.3cm to 5cm with a mean of 2.03cm. Tumor depth ranged from 0.2cm to 5cm. 20% of the participants reported with tumor depth greater than 2.5cm, while 80% of patients reported with tumor depth less than 2.5cm. Out of 80 patients, 27 reported with negative lymph nodes, while 53 patients reported with positive lymph nodes. Conclusion: Our study concludes that relationship exists between the depth of primary tumor and cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa.Keywords: squamous cell carcinoma, tumor depth, cervical lymphadenopathy, buccal mucosa
Procedia PDF Downloads 2382812 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1002811 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 1232810 A Content Analysis of ‘Junk Food’ Content in Children’s TV Programs: A Comparison of UK Broadcast TV and Video-On-Demand Services
Authors: Alexander B. Barker, Megan Parkin, Shreesh Sinha, Emma Wilson, Rachael L. Murray
Abstract:
Objectives: Exposure to HFSS imagery is associated with consumption of foods high in fat, sugar, or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children’s television channels in the UK and the other of a selection of children’s programs available on video-on-demand (VOD) streaming sites. Design: Content analysis of three days’ worth of programs (including advertisements) on two popular children’s television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children’s programs available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Setting: United Kingdom, Participants: None. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, ‘Milkshake’ had a significantly higher proportion of programs/adverts which contained HFSS content than ‘CBeebies’. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programs containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children’s television channels and children's programs on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children’s television programs broadcast either on TV or VOD services are likely having an effect on HFSS consumption in children and legislative opportunities to prevent this exposure are being missed.Keywords: public health, epidemiology, obesity, content analysis
Procedia PDF Downloads 1942809 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains
Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou
Abstract:
With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.Keywords: production planning, inventory routing, column generation, mixed-integer linear programming
Procedia PDF Downloads 1172808 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4312807 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 3552806 The Interaction between Hydrogen and Surface Stress in Stainless Steel
Authors: Osamu Takakuwa, Yuta Mano, Hitoshi Soyama
Abstract:
This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.Keywords: hydrogen embrittlement, residual stress, surface finishing, stainless steel
Procedia PDF Downloads 3842805 The Effects of Wealth on Eco-Centric and Anthropocentric Environmentalism: A Statistical Approach Using the World Values Survey
Authors: Rubi Alvarez-Rodriguez
Abstract:
Traditionally, eco-centric and anthropocentric forms of environmentalism have been seen as mutually exclusive. While eco-centrism focuses on global environmental issues, anthropocentrism is concerned with local ones. The objective of this paper is to characterize the relationship between eco-centric and anthropocentric attitudes across 43 countries. This study analysed secondary data from the 2005 World Values Survey, using a standard linear regression approach. It is shown that eco-centric and anthropocentric attitudes are not mutually exclusive and that the predominance of one over the other is best predicted by a country’s level of wealth.Keywords: anthropocentrism, eco-centrism, pro-environmental attitudes, wealth
Procedia PDF Downloads 3652804 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 6412803 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production
Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim
Abstract:
This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell
Procedia PDF Downloads 1082802 Binary Logistic Regression Model in Predicting the Employability of Senior High School Graduates
Authors: Cromwell F. Gopo, Joy L. Picar
Abstract:
This study aimed to predict the employability of senior high school graduates for S.Y. 2018- 2019 in the Davao del Norte Division through quantitative research design using the descriptive status and predictive approaches among the indicated parameters, namely gender, school type, academics, academic award recipient, skills, values, and strand. The respondents of the study were the 33 secondary schools offering senior high school programs identified through simple random sampling, which resulted in 1,530 cases of graduates’ secondary data, which were analyzed using frequency, percentage, mean, standard deviation, and binary logistic regression. Results showed that the majority of the senior high school graduates who come from large schools were females. Further, less than half of these graduates received any academic award in any semester. In general, the graduates’ performance in academics, skills, and values were proficient. Moreover, less than half of the graduates were not employed. Then, those who were employed were either contractual, casual, or part-time workers dominated by GAS graduates. Further, the predictors of employability were gender and the Information and Communications Technology (ICT) strand, while the remaining variables did not add significantly to the model. The null hypothesis had been rejected as the coefficients of the predictors in the binary logistic regression equation did not take the value of 0. After utilizing the model, it was concluded that Technical-Vocational-Livelihood (TVL) graduates except ICT had greater estimates of employability.Keywords: employability, senior high school graduates, Davao del Norte, Philippines
Procedia PDF Downloads 1582801 Precoding-Assisted Frequency Division Multiple Access Transmission Scheme: A Cyclic Prefixes- Available Modulation-Based Filter Bank Multi-Carrier Technique
Authors: Ying Wang, Jianhong Xiang, Yu Zhong
Abstract:
The offset Quadrature Amplitude Modulation-based Filter Bank Multi-Carrier (FBMC) system provides superior spectral properties over Orthogonal Frequency Division Multiplexing. However, seriously affected by imaginary interference, its performances are hampered in many areas. In this paper, we propose a Precoding-Assisted Frequency Division Multiple Access (PA-FDMA) modulation scheme. By spreading FBMC symbols into the frequency domain and transmitting them with a precoding matrix, the impact of imaginary interference can be eliminated. Specifically, we first generate the coding pre-solution matrix with a nonuniform Fast Fourier Transform and pick the best columns by introducing auxiliary factors. Secondly, according to the column indexes, we obtain the precoding matrix for one symbol and impose scaling factors to ensure that the power is approximately constant throughout the transmission time. Finally, we map the precoding matrix of one symbol to multiple symbols and transmit multiple data frames, thus achieving frequency-division multiple access. Additionally, observing the interference between adjacent frames, we mitigate them by adding frequency Cyclic Prefixes (CP) and evaluating them with a signal-to-interference ratio. Note that PA-FDMA can be considered a CP-available FBMC technique because the underlying strategy is FBMC. Simulation results show that the proposed scheme has better performance compared to Single Carrier Frequency Division Multiple Access (SC-FDMA), etc.Keywords: PA-FDMA, SC-FDMA, FBMC, non-uniform fast fourier transform
Procedia PDF Downloads 692800 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning
Authors: S. A. N. Danushka, T. A. Weerasinghe
Abstract:
The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model
Procedia PDF Downloads 2022799 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid
Authors: Sameena Tarannum, S. Pranesh
Abstract:
The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.Keywords: gravity modulation, Oldroyd-b liquid, triple diffusive convection, venezian approach
Procedia PDF Downloads 1792798 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna
Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,
Abstract:
The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift
Procedia PDF Downloads 3082797 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City
Authors: Christian Kapuku, Seung-Young Kho
Abstract:
An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.Keywords: geographic information system (GIS), network construction, transportation database, open source data
Procedia PDF Downloads 1712796 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning
Authors: Dina Tareq Ismail, Alexandria A. Proff
Abstract:
The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation
Procedia PDF Downloads 1092795 An Evaluative Study of Services Provided in Community Based Rehabilitation Centres in Jordan
Authors: Wesam Darawsheh
Abstract:
Purpose: There is an absence of studies directed to evaluate the effectiveness of Community Based Rehabilitation (CBR) programs in Jordan. This research study is aimed at investigating the effectiveness of the services of CBR programmes in Jordan. Method: A questionnaire anonymized survey was carried out with forty-seven participants (stakeholders and volunteers) from four CBR centres in Jordan. It comprised eighteen questions that collected both qualitative and quantitative data with both closed- and open-ended questions. The survey assessed participants’ knowledge of CBR and perception of the effectiveness of services provided. The quantitative data were analyzed using SPSS Version 22.0 (2016, IBM Corporation New York). Qualitative data were analyzed through thematic content and analysis and open coding to identify emergent themes. Results: The ROC curve revealed that the AUC for questions of the survey to be (AUC=0.846) which indicated a good specificity and sensitivity of the questions of the survey. The MANOVA revealed insignificant results in the effect of the CBR site (p= 0.157), and the level of education of participants (p=0.549), on the perception of the effectiveness of CBR services. There were insignificant differences between the scores of PWDs and volunteers (p=0.781). 40.4% evaluated the effectiveness of CBR services to be low. This mainly stemmed out from the lack of efforts of the CBR programmes to raise the knowledge of the local community about CBR, disability and the role toward PWDs. Conclusions: A speculation for priorities of CBR programmes in Jordan was offered where efforts need to be directed at promoting livelihood and the empowerment components, in order to actualize the main three principles of CBR mainly by promoting multispectral collaboration as a way of operation.Keywords: community based rehabilitation (CBR), people with disabilities (PWDS), CBR centres, rehabilitation services, Jordan, mixed-methods, evaluative study
Procedia PDF Downloads 2562794 Survival Data with Incomplete Missing Categorical Covariates
Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar
Abstract:
The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution
Procedia PDF Downloads 4092793 The Impact of Gender Differences on the Expressions of Refusal in Jordanian Arabic
Authors: Hanan Yousef, Nisreen Naji Al-Khawaldeh
Abstract:
The present study investigates the use of the expression of refusal by native speakers of Jordanian Arabic (NSsJA) in different social situations (i.e. invitations, suggestions, and offers). It also investigates the influence of gender on the refusal realization patterns within the Jordanian culture to provide a better insight into the relation between situations, strategies and gender in the Jordanian culture. To that end, a group of 70 participants, including 35 male and 35 female students from different departments at the Hashemite University (HU) participated in this study using mixed methods (i.e. Discourse Completion Test (DCT), interviews and naturally occurring data). Data were analyzed in light of a developed coding scheme. The results showed that NSsJA preferred indirect strategies which mitigate the interaction such as "excuse, reason and, explanation" strategy more than other strategies which aggravate the interaction such as "face-threatening" strategy. Moreover, the analysis of this study has revealed a considerable impact of gender on the use of linguistic forms expressing refusal among NSsJA. Significant differences in the results of the Chi-square test relating the effect of participants' gender indicate that both males and females were conscious of the gender of their interlocutors. The findings provide worthwhile insights into the relation amongst types of communicative acts and the rapport between people in social interaction. They assert that refusal should not be labeled as face threatening act since it does not always pose a threat in some cases especially where refusal is expressed among friends, relatives and family members. They highlight some distinctive culture-specific features of the communicative acts of refusal.Keywords: gender, Jordanian Arabic, politeness, refusals, speech act
Procedia PDF Downloads 1722792 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines
Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno
Abstract:
The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.Keywords: household water uses, socio-economic classes, urban planning, urban water demand management
Procedia PDF Downloads 3092791 Availability of TB Infection Control Plans at Rural Hospitals of South Africa
Authors: Takalani Tshitangano
Abstract:
Background: In Limpopo province the rate of new tuberculosis (TB) cases increase daily. The Infection Control (IC) plan is one of the essential actions for TB IC. This study aimed to establish the availability of these plans at health care facilities. Objectives: The objectives were to explore and describe the awareness and knowledge of health care workers (HCWs) of the availability and content of TB IC plan; and to identity the role of infection control committees from the perspective of HCWs. Method: A qualitative approach using a cross-sectional descriptive design was adopted. The target population was all HCWs from the seven hospitals of Vhembe district. A purposive sampling approach was used to select 57 participants. The approval to conduct this study was obtained from the relevant authorities and participants. Data were collected through seven focus group discussions comprising five to 10 members. An unstructured discussion guide was used to collect data, and an open-coding method was used to analyse the data. Lincoln and Guba’s criteria ensured trustworthiness of the study findings. Results: Findings revealed that HCWs were not aware of the availability and the information contained in the TB IC plans. No person was designated as TB IC officer at hospital level. There was lack of a TB IC Committee and teams as well as ineffective utilisation of those that did exist. Conclusions: It was concluded that if the TB IC plans are not available at health care facilities, then the TB IC practices implemented by HCWs vary, resulting in TB nosocomial infection transmission. It was recommended that the World Health Organisation’s TB IC plans be adopted and implemented in Vhembe district.Keywords: health care workers' awareness, health care workers' knowledge, availability of TB infection control plans, rural hospitals
Procedia PDF Downloads 2232790 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces
Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi
Abstract:
Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.Keywords: tPA, recombinant, transgenic, tobacco
Procedia PDF Downloads 152