Search results for: geographic feature distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7128

Search results for: geographic feature distribution

5118 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex

Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu

Abstract:

This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.

Keywords: aeromagnetic, basement complex, meta-sediment, precambrian

Procedia PDF Downloads 430
5117 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 173
5116 The Interethnic Communication Apprehension Experiences of Indigenous Peoples in the Philippines

Authors: Christine Alvarez, Rio Gojar, Hannah Jimala

Abstract:

The Philippines is a large country composed of geographic islands and distinct cultural groups. But what makes such a diverse country connect and communicate with one another? This case study examines the narrative of lived experiences expressed by the selected indigenous peoples through an in-depth interview. Based on the results, some indigenous peoples feel that they are motivated to engage in interethnic discussions that concern their ethnic identity and such cultural misconceptions about them. Their experiences in being involved in indigenous people centered and community/academic organizations helped them in every interethnic communication. After all, some indigenous peoples expressed that they find their own communities as a safe space. Although indigenous peoples present less interethnic communication apprehension, its existence is still manifested in their experiences in verbal communication, non-verbal communication, and mediated communication. Lastly, their Interethnic Communication Apprehension manifested on their innate and learned personality whenever there is a large crowd, and is affected by their socioeconomic status. This study mainly focuses on what are the interethnic communication apprehension experiences of indigenous peoples in the country. Concepts are applied from the Contextual Theory of Interethnic Communication theory, Interethnic Communication Apprehension, and other types of communication. Meanwhile, the participants are determined through a purposive sampling with the criteria as indigenous people who stays in Manila in pursuit of higher education.

Keywords: ethnic identity, interethnic relation, intercultural communication, indigenous people community

Procedia PDF Downloads 113
5115 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 243
5114 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 160
5113 The Overload Behaviour of Reinforced Concrete Flexural Members

Authors: Angelo Thurairajah

Abstract:

Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.

Keywords: ductility, softening, ultimate deflection, overload behaviour, moment redistribution

Procedia PDF Downloads 80
5112 Modelling the Yield Stress of Magnetorheological Fluids

Authors: Hesam Khajehsaeid, Naeimeh Alagheband

Abstract:

Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.

Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model

Procedia PDF Downloads 179
5111 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 267
5110 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212
5109 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City

Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng

Abstract:

Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.

Keywords: human perception, public space quality, deep learning, negative elements, street images

Procedia PDF Downloads 115
5108 Strategy of Balancing in Russian Energy Diplomacy toward Middle East

Authors: Davood Karimipour

Abstract:

Since long ago, Russia has been one of the most influential actors in regional equations in South West Asia. The geographic affinity of its vital interests with Western Asia has caused Moscow to have a high sensitivity to the balance of power in the Middle East, as its role in the Syrian crisis clearly demonstrated the importance. In recent years, Moscow has tried to use the energy diplomacy tool in maintaining the balance of power between the major powers in the region. The paper, based on the qualitative case study method, investigates how Russia’s energy diplomacy plays a role in the balance of regional forces in the Middle East, studying the country’s conduct towards Iran, Saudi Arabia, Turkey, and Israel. The hypothesis presented that Russia, using energy tools, is trying to push the regional powers toward cooperation in order to increase the influence in the region, increase power in global markets, and controlling the US to restore power balance in the region. Its cooperation in the Iranian gas industry, the country’s relations with Saudis in the framework of OPEC, cooperation with the Turkish Kurds and the presence in the Israeli gas industry are an example of these Russian energy diplomacy initiatives in West Asia, which is the common point of the Moscow approach to South West Asia.

Keywords: Russia, balance of power, energy diplomacy, Middle East

Procedia PDF Downloads 165
5107 A New Spell-Out Mechanism

Authors: Yusra Yahya

Abstract:

In this paper, a new spell-out mechanism is developed and defended. This mechanism builds on the role of phase heads as both the loci of spell-out features and the transfer triggers via either Phase Impenetrability Condition 1 (PIC1) and/or Phase Impenetrability Condition 2 (PIC2). The assumption here is that phase heads, mainly v*, can regulate the spell-out process by deciding both the type of spell-out applying and the timing of spell-out relevant. This paper also proposes a new form of the constraint Wrap call it Wrap-XP’ and it is assumed to apply to IP as a functional maximal projection. This extension is shown to fall as a natural result once we assume the new theory of phases and multiple spell-out. Moreover, it is proposed in this work that some forms of XP movement are not motivated by an EPP feature of a strong phase head mainly v*, but they are rather motivated by a last resort strategy to accomplish the spell-out instruction of this phase head.

Keywords: linguistics, syntax, phonology, phase theory, optimality theory

Procedia PDF Downloads 514
5106 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 363
5105 Application of Fuzzy Approach to the Vibration Fault Diagnosis

Authors: Jalel Khelil

Abstract:

In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.

Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration

Procedia PDF Downloads 466
5104 An Investigation of Performance Versus Security in Cognitive Radio Networks with Supporting Cloud Platforms

Authors: Kurniawan D. Irianto, Demetres D. Kouvatsos

Abstract:

The growth of wireless devices affects the availability of limited frequencies or spectrum bands as it has been known that spectrum bands are a natural resource that cannot be added. Many studies about available spectrum have been done and it shows that licensed frequencies are idle most of the time. Cognitive radio is one of the solutions to solve those problems. Cognitive radio is a promising technology that allows the unlicensed users known as secondary users (SUs) to access licensed bands without making interference to licensed users or primary users (PUs). As cloud computing has become popular in recent years, cognitive radio networks (CRNs) can be integrated with cloud platform. One of the important issues in CRNs is security. It becomes a problem since CRNs use radio frequencies as a medium for transmitting and CRNs share the same issues with wireless communication systems. Another critical issue in CRNs is performance. Security has adverse effect to performance and there are trade-offs between them. The goal of this paper is to investigate the performance related to security trade-off in CRNs with supporting cloud platforms. Furthermore, Queuing Network Models with preemptive resume and preemptive repeat identical priority are applied in this project to measure the impact of security to performance in CRNs with or without cloud platform. The generalized exponential (GE) type distribution is used to reflect the bursty inter-arrival and service times at the servers. The results show that the best performance is obtained when security is disable and cloud platform is enable.

Keywords: performance vs. security, cognitive radio networks, cloud platforms, GE-type distribution

Procedia PDF Downloads 346
5103 Interlinkages and Impacts of the Indian Ocean on the Nile River

Authors: Zeleke Ayalew Alemu

Abstract:

Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region.

Keywords: water, management, environment, planning

Procedia PDF Downloads 98
5102 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 544
5101 Business Continuity Risk Review for a Large Petrochemical Complex

Authors: Michel A. Thomet

Abstract:

A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.

Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF

Procedia PDF Downloads 219
5100 The Research of the Game Interface Improvement Due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game

Authors: Shih-Chieh Liao, Cheng-Yan Shuai

Abstract:

The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a new type of arcade stick by focus group and assessed by the expert. By filtering the most representative, and build up the control system for the arcade stick, and testing time and bullets consumed in two experiments, try to prove it works in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.

Keywords: arcade stick, joystick, user interface, 2D STG

Procedia PDF Downloads 80
5099 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 153
5098 User’s Susceptibility Factors to Malware Attacks: A Systematic Literature Review

Authors: Awad A. Younis, Elise Stronberg, Shifa Noor

Abstract:

Malware attacks due to end-user vulnerabilities have been noticeably increased in the past few years. Investigating the factors that make an end-user vulnerable to those attacks is critical because they can be utilized to set up proactive strategies such as awareness and education to mitigate the impacts of those attacks. Some existing studies investigated demographic, behavioral, and cultural factors that make an end-user susceptible to malware attacks. However, it has been challenging to draw more general conclusions from individual studies due to the varieties in the type of end-users and different types of malware. Therefore, we conducted a systematic literature review (SLR) of the existing research for end-user susceptibility factors to malware attacks. The results showed while some demographic factors are mostly associated with malware infection regardless of the end users' type, age, and gender are not consistent among the same and different types of end-users. Besides, the association of culture and personality factors with malware infection are consistent in most of the selected studies and for all type of end-users. Moreover, malware infection varies based on age, geographic location, and host types. We propose that future studies should carefully take into consideration the type of end-users because different end users may be exposed to different threats or be targeted based on their user domains’ characteristics. Additionally, as different types of malware use different tactics to trick end-users, taking the malware types into consideration is important.

Keywords: cybersecurity, malware, end-users, demographics, personality, culture, systematic literature review

Procedia PDF Downloads 230
5097 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 283
5096 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process

Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu

Abstract:

Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.

Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite

Procedia PDF Downloads 73
5095 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 9
5094 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 448
5093 QoS-CBMG: A Model for e-Commerce Customer Behavior

Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani

Abstract:

An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.

Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining

Procedia PDF Downloads 416
5092 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality

Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo

Abstract:

Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.

Keywords: linear model, models and modeling, probability, randomness, sample

Procedia PDF Downloads 118
5091 A Critical Review of Assessments of Geological CO2 Storage Resources in Pennsylvania and the Surrounding Region

Authors: Levent Taylan Ozgur Yildirim, Qihao Qian, John Yilin Wang

Abstract:

A critical review of assessments of geological carbon dioxide (CO2) storage resources in Pennsylvania and the surrounding region was completed with a focus on the studies of Midwest Regional Carbon Sequestration Partnership (MRCSP), United States Department of Energy (US-DOE), and United States Geological Survey (USGS). Pennsylvania Geological Survey participated in the MRCSP Phase I research to characterize potential storage formations in Pennsylvania. The MRCSP’s volumetric method estimated ~89 gigatonnes (Gt) of total CO2 storage resources in deep saline formations, depleted oil and gas reservoirs, coals, and shales in Pennsylvania. Meanwhile, the US-DOE calculated storage efficiency factors using log-odds normal distribution and Monte Carlo sampling, revealing contingent storage resources of ~18 Gt to ~20 Gt in deep saline formations, depleted oil and gas reservoirs, and coals in Pennsylvania. Additionally, the USGS employed Beta-PERT distribution and Monte Carlo sampling to determine buoyant and residual storage efficiency factors, resulting in 20 Gt of contingent storage resources across four storage assessment units in Appalachian Basin. However, few studies have explored CO2 storage resources in shales in the region, yielding inconclusive findings. This article provides a critical and most up to date review and analysis of geological CO2 storage resources in Pennsylvania and the region.

Keywords: carbon capture and storage, geological CO2 storage, pennsylvania, appalachian basin

Procedia PDF Downloads 54
5090 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
5089 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 185