Search results for: dual barge lifting operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3652

Search results for: dual barge lifting operation

1642 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 145
1641 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads

Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma

Abstract:

Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.

Keywords: helical piles, experimental, numerical, lateral loading, group efficiency

Procedia PDF Downloads 25
1640 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation

Procedia PDF Downloads 391
1639 Comparison of Salt-Water Intrusion into Eastern and Western Coastal Aquifers of Urmia Lake thru Over-Exploration of Groundwater Resources

Authors: Saman Javadi, Mohammad Hassan Mahmoudi, Fatemeh Jafari, Aminreza Neshat

Abstract:

Urmia Lake’s water level has been dropped during the past decade. Although the most common reason in studies was declared climate change, but observation of adjacent lake (like Van in Turkey) is not the same as the common reason. Most of studies were focused on climate and land use change, but groundwater resource as one of the most important element is negligible. Due to population and agriculture activities growth, exploration of groundwater resource has been increased. In as much as continued decline of water levels can lead to saltwater intrusion, reduce stream discharge near outcrop regions and threaten groundwater quality, aquifers of this region were affected by saltwater intrusion of Urmia Lake. In this research comparison of saltwater intrusion into eastern and western coastal aquifer was studied. In conclusion eastern aquifers are in a critical situation; vice versa the western ones are in a better situation. Thus applying management of groundwater operation would be necessary for eastern aquifers.

Keywords: coastal aquifer, groundwater over-exploration, saltwater intrusion, Urmia Lake

Procedia PDF Downloads 532
1638 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB

Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan

Abstract:

Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.

Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA

Procedia PDF Downloads 323
1637 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 130
1636 Rejuvenation of Premature Ovarian Failure with Stem Cells/IVA Technique

Authors: Elham Vojoudi, Marzieh Mehrafza, Ahmad Hosseini, Azadeh Raofi, Maryam Najafi

Abstract:

Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of this disorder is increasing year by year. In these patients, poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few follicles despite aggressive stimulation. Up to now, egg donation is the only way to resolve infertility problems in POF patients. Therefore, some novel aspects such as activating (Akt signaling pathway) and inhibiting (Hippo-signaling) elements have been identified as IVA procedure that promotes primordial follicle activation. In this study, we used the newly developed technique (combination of in vitro activation of dormant follicles (IVA) and stem cell therapy) to promote ovarian follicle growth much more efficiently than the natural, in vivo process for women with POF. Transplantation of Warton Jelly-MSCs to the ovaries of POF patients rescued overall ovarian function. Participants (10 patients) were followed up monthly for a period of six months by hormonal (AMH, FSH, LH and E2), clinical (resuming menstruation), and US (folliculometry) outcomes after a laparoscopic operation. In summary, IVA/WJ-MSC transplantation may provide an effective treatment for POF.

Keywords: POF, in vitro activation, stem cell therapy, infertility

Procedia PDF Downloads 126
1635 Validation of Two Field Base Dynamic Balance Tests in the Activation of Selected Hip and Knee Stabilizer Muscles

Authors: Mariam A. Abu-Alim

Abstract:

The purpose of this study was to validate muscle activation amplitudes of two field base dynamic balance tests that are used as strengthen and motor control exercises too in the activation of selected hip and knee stabilizer muscles. Methods: Eighteen college-age females students (21±2 years; 65.6± 8.7 kg; 169.7±8.1 cm) who participated at least for 30 minutes in physical activity most days of the week volunteered. The wireless BIOPAC (MP150, BIOPAC System. Inc, California, USA) surface electromyography system was used to validate the activation of the Gluteus Medius and the Adductor Magnus of hip stabilizer muscles; and the Hamstrings, Quadriceps, and the Gastrocnemius of the knee stabilizer muscles. Surface electrodes (EL 503, BIOPAC, System. Inc) connected to dual wireless EMG BioNormadix Transmitters were place on selected muscles of participants dominate side. Manual muscle testing was performed to obtain the maximal voluntary isometric contraction (MVIC) in which all collected muscle activity data during the three reaching direction: anterior, posteromedial, posterolateral of the Star Excursion Balance Test (SEBT) and the Y-balance Test (YBT) data could be normalized. All participants performed three trials for each reaching direction of the SEBT and the YBT. The domanial leg trial for each participant was selected for analysis which was also the standing leg. Results: the selected hip stabilizer muscles (Gluteus Medius, Adductor Magnus) were both greater than 100%MVIC during the performance of the SEBT and in all three directions. Whereas, selected knee stabilizer muscles had greater activation 0f 100% MVIC and were significantly more activated during the performance of the YBT test in all three reaching directions. The results showed that the posterolateral and the postmedial reaching directions for both dynamic balance tests had greater activation levels and greater than 200%MVIC for all tested muscles expect of the hamstrings. Conclusion: the results of this study showed that the SEBT and the YBT had validated high levels of muscular activity for the hip and the knee stabilizer muscles; which can be used to represent the improvement, strength, control and the decreasing in the injury levels. Since these selected hip and knee stabilizer muscles, represent 35% of all athletic injuries depending on the type of sport.

Keywords: dynamic balance tests, electromyography, hip stabilizer muscles, nee stabilizer muscles

Procedia PDF Downloads 148
1634 Protection of Human Rights in Europe: The Parliamentary Dimension

Authors: Aleksandra Chiniaeva

Abstract:

The following paper describes the activity of national and international parliamentary assemblies of the European region in protection and promotion of human rights. It may be said that parliamentarians have a “double mandate” — as members of the international assembly and of their respective national parliaments. In other words, parliamentarization at both international and national level provides a situation for parliamentarians, where they link people, national governments and international organizations. The paper is aimed towards demonstrating that the activity of the main international parliamentary assemblies of the European region have a real positive impact on the human rights situation in the European region. In addition, the paper describes the assemblies that include protection of human rights in their Agenda as one of the main subjects: the EP, the PACE, the OSCE PA and the IPA CIS. Co-operation activities such as joint election observation; participation in inter-parliamentary associations, such as the IPU; conclusion agreements allow assemblies to provide observation of human right situation in the states that are not members of the particular organization and as consequence make their impact broader.

Keywords: human rights, international parliamentary assembly, IPU, EP, PACE, OSCE, international election observation

Procedia PDF Downloads 363
1633 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration

Procedia PDF Downloads 308
1632 Design for Safety: Safety Consideration in Planning and Design of Airport Airsides

Authors: Maithem Al-Saadi, Min An

Abstract:

During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.

Keywords: airport airside planning and design, design for safety, fuzzy reasoning approach, fuzzy AHP, risk assessment

Procedia PDF Downloads 360
1631 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 274
1630 Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment

Authors: Dipak Sonawane, Sudarshan Daga, Somesh Gupta

Abstract:

Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals.

Keywords: quantitative risk assessment, hazard assessment, consequence analysis, individual risk, societal risk

Procedia PDF Downloads 76
1629 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations

Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn

Abstract:

Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.

Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis

Procedia PDF Downloads 445
1628 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 392
1627 Trends and Priorities for the Fishing Sector in the Republic of Moldova

Authors: Mihaela Munteanu Pila

Abstract:

Abstract The Republic of Moldova has a high potential for commercial growth of fish, due to its rich natural resources. Every year, national actions are implemented for the development and improvement of wetlands through acclimatization of hydrobionts, cleaning of adjacent waste areas and repopulation with valuable fish species. Due to aggressive environmental factors, anthropogenic factors, poaching or insufficient financial resources allocated to the authorities, there is a strong degradation of aquatic resources in the area. The main issue of the study is to identify priority areas for the development of fish farming in the area and maintain potential reserves to increase the efficiency of fish production in the pond. The rational operation of pond-type reservoirs will make it possible to maintain the breeding base of many fish species and will in future become a valuable source of local marketable products, in order to increase the productivity of fish in ponds and exploit the region's resources. The research looked at the problems that led to a decline in local fish production and identified a number of long-term measures needed to develop aquaculture.

Keywords: Development, , Republic of Moldova, , fisheries, , productivity

Procedia PDF Downloads 111
1626 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System

Authors: Safia Bashir, Zulfiqar Memon

Abstract:

During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.

Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system

Procedia PDF Downloads 154
1625 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor

Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran

Abstract:

Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.

Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor

Procedia PDF Downloads 302
1624 Thermal Resistance of Special Garments Exposed to a Radiant Heat

Authors: Jana Pichova, Lubos Hes, Vladimir Bajzik

Abstract:

Protective clothing is designed to keep a wearer save in hazardous conditions or enable perform short time working operation without being injured or feeling discomfort. Firefighters or other related workers are exposed to abnormal heat which can be conductive, convective or radiant type. Their garment is proposed to resist this conditions and prevent burn injuries or dead of human. However thermal comfort of firefighter exposed to high heat source have not been studied yet. Thermal resistance is the best representative parameter of thermal comfort. In this study a new method of testing of thermal resistance of special clothing exposed to high radiation heat source was designed. This method simulates human body wearing single or multi-layered garment which is exposed to radiative heat. Setup of this method enables measuring of radiative heat flow in time without effect of convection. The new testing method is verified on chosen group of textiles for firefighters.

Keywords: protective clothing, radiative heat, thermal comfort of firefighters, thermal resistance of special garments

Procedia PDF Downloads 370
1623 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki

Abstract:

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Keywords: carrier lifetime, impedance, nano-textured, photocurrent

Procedia PDF Downloads 229
1622 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids

Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci

Abstract:

The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.

Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD

Procedia PDF Downloads 485
1621 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel

Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani

Abstract:

Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.

Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics

Procedia PDF Downloads 113
1620 Past, Present, and Future of Robotics Technology in Construction Industry (Literature Review)

Authors: Samira Haghbin, Behnam Daryayelaal, Zeinab Amiri

Abstract:

As a result of rapid progress of technology in various industries, the only way to survive in a competitive market of business is to update one's situation along with the said developments. During recent decades, Robotics and automation of the construction operation has emerged as one of the important technologies grabbing the attention of various industries and specially the construction industry. Because of the coming labor shortage of the aging society in the near future, robots will be used in construction fields more than ever. By predicting the condition of Robotics in world's future construction industry, we can make necessary preparations to face with needs imposed by the time and stay ahead. This article takes a library study approach and presents a literature review of existing studies with an aim to investigate the use of robotics in past, present and future of construction industry and make predictions on its' growth and change process. Therefore, to make familiar with this kind of technology and its' requirements in the construction industry, the status of Robotics in construction industry of different countries of the world has been studied and necessary context for its' future progress is expressed. It is hoped that identifying needs and required contexts will facilitate further development of advanced technologies such as robotics industry and lead to more preparation for future.

Keywords: future of robotics, construction industry, construction automation, trends of automation

Procedia PDF Downloads 385
1619 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 398
1618 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 328
1617 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 99
1616 High Frequency Memristor-Based BFSK and 8QAM Demodulators

Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil

Abstract:

This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.

Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM

Procedia PDF Downloads 164
1615 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 508
1614 Brine Waste from Seawater Desalination in Malaysia

Authors: Cynthia Mahadi, Norhafezah Kasmuri

Abstract:

Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA).

Keywords: seawater desalination, brine waste, environmental impact assessment, fuzzy Delphi method

Procedia PDF Downloads 76
1613 A Consideration of Dialectal and Stylistic Shifts in Literary Translation

Authors: Pushpinder Syal

Abstract:

Literary writing carries the stamp of the current language of its time. In translating such texts, it becomes a challenge to capture such reflections which may be evident at several levels: the level of dialectal use of language by characters in stories, the alterations in syntax as tools of writers’ individual stylistic choices, the insertion of quasi-proverbial and gnomic utterances, and even the level of the pragmatics of narrative discourse. Discourse strategies may differ between earlier and later texts, reflecting changing relationships between narrators and readers in changed cultural and social contexts. This paper is a consideration of these features by an approach that combines historicity with a description, contextualizing language change within a discourse framework. The process of translating a collection of writings of Punjabi literature spanning 100 years was undertaken for this study and it was observed that the factor of the historicity of language was seen to play a role. While intended for contemporary readers, the translation of literature over the span of a century poses the dual challenge of needing to possess both accessibility and immediacy as well as adherence to the 'old world' styles of communicating and narrating. The linguistic changes may be observed in a more obvious sense in the difference of diction and word formation – with evidence of more hybridized and borrowed forms in modern and contemporary writings, as compared to the older writings. The latter not only contain vestiges of proverbs and folk sayings, but are also closer to oral speech styles. These will be presented and analysed in the form of chronological listing and by these means, the social process of translation from orality to written text can be seen as traceable in the above-mentioned works. More subtle and underlying shifts can be seen through the analysis of speech acts and implicatures in the same literature, in which the social relationships underlying language use are evident as discourse systems of belief and understanding. They present distinct shifts in worldview as seen at different points in time. However, some continuities of language and style are also clearly visible, and these aid the translator in putting together a set of thematic links which identify the literature of a region and community, and constitute essential outcomes in the effort to preserve its distinctive nature.

Keywords: cultural change, dialect, historicity, stylistic variation

Procedia PDF Downloads 127