Search results for: data mining technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30156

Search results for: data mining technique

28146 Adversary Emulation: Implementation of Automated Countermeasure in CALDERA Framework

Authors: Yinan Cao, Francine Herrmann

Abstract:

Adversary emulation is a very effective concrete way to evaluate the defense of an information system or network. It is about building an emulator, which depending on the vulnerability of a target system, will allow to detect and execute a set of identified attacks. However, emulating an adversary is very costly in terms of time and resources. Verifying the information of each technique and building up the countermeasures in the middle of the test is also needed to be accomplished manually. In this article, a synthesis of previous MITRE research on the creation of the ATT&CK matrix will be as the knowledge base of the known techniques and a well-designed adversary emulation software CALDERA based on ATT&CK Matrix will be used as our platform. Inspired and guided by the previous study, a plugin in CALDERA called Tinker will be implemented, which is aiming to help the tester to get more information and also the mitigation of each technique used in the previous operation. Furthermore, the optional countermeasures for some techniques are also implemented and preset in Tinker in order to facilitate and fasten the process of the defense improvement of the tested system.

Keywords: automation, adversary emulation, CALDERA, countermeasures, MITRE ATT&CK

Procedia PDF Downloads 211
28145 The Evaluation of the Patients Related to Numeric Pain Scales: The Case of Turkey

Authors: Maide Yesilyurt, Saide Faydalı

Abstract:

Patients experience pain at different intensities in postoperative. The diagnosis of the pain, the assessment and the success of the treatment and care make the measurement of this finding compulsory. The aim of the study is to determine the evaluation differences numeric pain scales. The descriptive study was conducted with 360 patients with in postoperative. The data were obtained from questionnaires related to six numeric pain scales most preferred in clinical use, and a face-to-face interview technique was used by the researcher. Regarding to numeric pain scale, questions include forth positive and one negative statement. In evaluating the data; chi-square and Pearson correlation tests were used. For the study, the patients’ informed consents, the institution and the ethics committee received permission. In this study, patients' ages are between 18-80, 95.8% of the patients were not informed about pain assessment. Patients evaluated the 5-item numeric scale as the easy, can be answered quickly, accurate, and appropriate for clinical use and the 101 items numeric scale as complex than other scales. Regarding to numeric pain scales with positive statements between age, marital status, educational status, previous surgery, having chronic disease and getting information about pain assessment significant difference has been detected. All numeric pain scales are correlated to each other. As a result, it was determined that as the items in the numerical scales decreased, the patients were able to perceive the scales better, and the items in the scales increased, the patients were in trouble to understand.

Keywords: numeric pain scales, nurse, pain assessment, patient

Procedia PDF Downloads 291
28144 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 34
28143 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 92
28142 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing

Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu

Abstract:

Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.

Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique

Procedia PDF Downloads 158
28141 Comparison of Propofol versus Ketamine-Propofol Combination as an Anesthetic Agent in Supratentorial Tumors: A Randomized Controlled Study

Authors: Jakkireddy Sravani

Abstract:

Introduction: The maintenance of hemodynamic stability is of pivotal importance in supratentorial surgeries. Anesthesia for supratentorial tumors requires an understanding of localized or generalized rising ICP, regulation, and maintenance of intracerebral perfusion, and avoidance of secondary systemic ischemic insults. We aimed to compare the effects of the combination of ketamine and propofol with propofol alone when used as an induction and maintenance anesthetic agent during supratentorial tumors. Methodology: This prospective, randomized, double-blinded controlled study was conducted at AIIMS Raipur after obtaining the institute Ethics Committee approval (1212/IEC-AIIMSRPR/2022 dated 15/10/2022), CTRI/2023/01/049298 registration and written informed consent. Fifty-two supratentorial tumor patients posted for craniotomy and excision were included in the study. The patients were randomized into two groups. One group received a combination of ketamine and propofol, and the other group received propofol for induction and maintenance of anesthesia. Intraoperative hemodynamic stability and quality of brain relaxation were studied in both groups. Statistical analysis and technique: An MS Excel spreadsheet program was used to code and record the data. Data analysis was done using IBM Corp SPSS v23. The independent sample "t" test was applied for continuously dispersed data when two groups were compared, the chi-square test for categorical data, and the Wilcoxon test for not normally distributed data. Results: The patients were comparable in terms of demographic profile, duration of the surgery, and intraoperative input-output status. The trends in BIS over time were similar between the two groups (p-value = 1.00). Intraoperative hemodynamics (SBP, DBP, MAP) were better maintained in the ketamine and propofol combination group during induction and maintenance (p-value < 0.01). The quality of brain relaxation was comparable between the two groups (p-value = 0.364). Conclusion: Ketamine and propofol combination for the induction and maintenance of anesthesia was associated with superior hemodynamic stability, required fewer vasopressors during excision of supratentorial tumors, provided adequate brain relaxation, and some degree of neuroprotection compared to propofol alone.

Keywords: supratentorial tumors, hemodynamic stability, brain relaxation, ketamine, propofol

Procedia PDF Downloads 29
28140 A Word-to-Vector Formulation for Word Representation

Authors: Sandra Rizkallah, Amir F. Atiya

Abstract:

This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.

Keywords: natural language processing, word to vector, text similarity, text mining

Procedia PDF Downloads 276
28139 Motherhood Factors Influencing the Business Growth of Women-Owned Sewing Businesses in Lagos, Nigeria: A Mixed Method Study

Authors: Oyedele Ogundana, Amon Simba, Kostas Galanakis, Lynn Oxborrow

Abstract:

The debate about factors influencing the business growth of women-owned businesses has been a topical issue in business management. Currently, scholars have identified the issues of access to money, market, and management as canvasing factors influencing the business growth of women-owned businesses. However, the influence of motherhood (household/family context) on business growth is inconclusive in the literature; despite that women are more family-oriented than their male counterparts. Therefore, this research study considers the influence of motherhood factor (household/family context) on the business growth of women-owned sewing businesses (WOSBs) in Lagos, Nigeria. The sewing business sector is chosen as the fashion industry (which includes sewing businesses) currently accounts for the second largest number of jobs in Sub-Saharan Africa, following agriculture. Thus, sewing businesses provide a rich ground for contributing to existing scholarly work. Research questions; (1) In what way does the motherhood factor influence the business growth of WOSBs in Lagos? (2) To what extent does the motherhood factor influence the business growth of WOSBs in Lagos? For the method design, a pragmatic approach, a mixed-methods technique and an abductive form of reasoning are adopted. The method design is chosen because it fits, better than other research perspectives, with the research questions posed in this study. For instance, using a positivist approach will not sufficiently answer research question 1, neither will an interpretive approach sufficiently answer research question 2. Therefore, the research method design is divided into 2 phases, and the results from one phase are used to inform the development of the subsequent phases (only phase 1 has been completed at the moment). The first phase uses qualitative data and analytical method to answer research question 1. While the second phase of the research uses quantitative data and analytical method to answer research question 2. For the qualitative phase, 5 WOSBs were purposefully selected and interviewed. The sampling technique is selected as it was not the intention of the researcher to make any statistical inferences, at this phase, rather the purpose was just exploratory. Therefore, the 5 sampled women comprised of 2 unmarried women, 1 married woman with no child, and 2 married women with children. A 40-60 minutes interview was conducted per participants. The interviews were audio-recorded and transcribed. Thereafter, the data were analysed using thematic analysis in order to unearth patterns and relationships. Findings for the first phase of this research reveals that motherhood (household/family context) directly influences (positively/negatively) the performance of WOSBs in Lagos. Apart from a direct influence on WOSBs, motherhood also moderates (positively/negatively) other factors–e.g., access to money, management/human resources and market/opportunities– influencing WOSBs in Lagos. To further strengthen this conclusion, a word frequency query result shows that ‘family,’ ‘husband’ and ‘children’ are among the 10 words used frequently in all the interview transcripts. This first phase contributes to existing studies by showing the various forms by which motherhood influences WOSBs. The second phase (which data are yet to be collected) would reveal the extent to which motherhood influence the business growth of WOSBs in Lagos.

Keywords: women-owned sewing businesses, business growth, motherhood, Lagos

Procedia PDF Downloads 164
28138 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 201
28137 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 483
28136 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple

Procedia PDF Downloads 479
28135 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 146
28134 Choral Singers' Preference for Expressive Priming Techniques

Authors: Shawn Michael Condon

Abstract:

Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer.

Keywords: emotion, expressivity, performance, singing, teaching

Procedia PDF Downloads 158
28133 An Overview of Corroded Pipe Repair Techniques Using Composite Materials

Authors: Lim Kar Sing, Siti Nur Afifah Azraai, Norhazilan Md Noor, Nordin Yahaya

Abstract:

Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented.

Keywords: composite materials, pipeline, repair technique, polymers

Procedia PDF Downloads 510
28132 [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: differential forms, holder inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series

Procedia PDF Downloads 237
28131 Marginal Productivity of Small Scale Yam and Cassava Farmers in Kogi State, Nigeria: Data Envelopment Analysis as a Complement

Authors: M. A. Ojo, O. A. Ojo, A. I. Odine, A. Ogaji

Abstract:

The study examined marginal productivity analysis of small scale yam and cassava farmers in Kogi State, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 150 randomly selected yam and cassava farmers from three Local Government Areas of the State. Description statistics, data envelopment analysis and Cobb-Douglas production function were used to analyze the data. The DEA result on the overall technical efficiency of the farmers showed that 40% of the sampled yam and cassava farmers in the study area were operating at frontier and optimum level of production with mean technical efficiency of 1.00. This implies that 60% of the yam and cassava farmers in the study area can still improve their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Cobb-Douglas analysis of factors affecting the output of yam and cassava farmers showed that labour, planting materials, fertilizer and capital inputs positively and significantly affected the output of the yam and cassava farmers in the study area. The study further revealed that yam and cassava farms in the study area operated under increasing returns to scale. This result of marginal productivity analysis further showed that relatively efficient farms were more marginally productive in resource utilization This study also shows that estimating production functions without separating the farms to efficient and inefficient farms bias the parameter values obtained from such production function. It is therefore recommended that yam and cassava farmers in the study area should form cooperative societies so as to enable them have access to productive inputs that will enable them expand. Also, since using a single equation model for production function produces a bias parameter estimates as confirmed above, farms should, therefore, be decomposed into efficient and inefficient ones before production function estimation is done.

Keywords: marginal productivity, DEA, production function, Kogi state

Procedia PDF Downloads 484
28130 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption

Procedia PDF Downloads 179
28129 Saline Aspiration Negative Intravascular Test: Mitigating Risk with Injectable Fillers

Authors: Marcelo Lopes Dias Kolling, Felipe Ferreira Laranjeira, Guilherme Augusto Hettwer, Pedro Salomão Piccinini, Marwan Masri, Carlos Oscar Uebel

Abstract:

Introduction: Injectable fillers are among the most common nonsurgical cosmetic procedures, with significant growth yearly. Knowledge of rheological and mechanical characteristics of fillers, facial anatomy, and injection technique is essential for safety. Concepts such as the use of cannula versus needle, aspiration before injection, and facial danger zones have been well discussed. In case of an accidental intravascular puncture, the pressure inside the vessel may not be sufficient to push blood into the syringe due to the characteristics of the filler product; this is especially true for calcium hydroxyapatite (CaHA) or hyaluronic acid (HA) fillers with high G’. Since viscoelastic properties of normal saline are much lower than those of fillers, aspiration with saline prior to filler injection may decrease the risk of a false negative aspiration and subsequent catastrophic effects. We discuss a technique to add an additional safety step to the procedure with saline aspiration prior to injection, a ‘’reverse Seldinger’’ technique for intravascular access, which we term SANIT: Saline Aspiration Negative Intravascular Test. Objectives: To demonstrate the author’s (PSP) technique which adds an additional safety step to the process of filler injection, with both CaHA and HA, in order to decrease the risk of intravascular injection. Materials and Methods: Normal skin cleansing and topical anesthesia with prilocaine/lidocaine cream are performed; the facial subunits to be treated are marked. A 3mL Luer lock syringe is filled with 2mL of 0.9% normal saline and a 27G needle, which is turned one half rotation. When a cannula is to be used, the Luer lock syringe is attached to a 27G 4cm single hole disposable cannula. After skin puncture, the 3mL syringe is advanced with the plunger pulled back (negative pressure). Progress is made to the desired depth, all the while aspirating. Once the desired location of filler injection is reached, the syringe is exchanged for the syringe containing a filler, securely grabbing the hub of the needle and taking care to not dislodge the needle tip. Prior to this, we remove 0.1mL of filler to allow for space inside the syringe for aspiration. We again aspirate and inject retrograde. SANIT is especially useful for CaHA, since the G’ is much higher than HA, and thus reflux of blood into the syringe is less likely to occur. Results: The technique has been used safely for the past two years with no adverse events; the increase in cost is negligible (only the cost of 2mL of normal saline). Over 100 patients (over 300 syringes) have been treated with this technique. The risk of accidental intravascular puncture has been calculated to be between 1:6410 to 1:40882 syringes among expert injectors; however, the consequences of intravascular injection can be catastrophic even with board-certified physicians. Conclusions: While the risk of intravascular filler injection is low, the consequences can be disastrous. We believe that adding the SANIT technique can help further mitigate risk with no significant untoward effects and could be considered by all performing injectable fillers. Further follow-up is ongoing.

Keywords: injectable fillers, safety, saline aspiration, injectable filler complications, hyaluronic acid, calcium hydroxyapatite

Procedia PDF Downloads 151
28128 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures

Authors: Mariem Saied, Jens Gustedt, Gilles Muller

Abstract:

We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.

Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments

Procedia PDF Downloads 129
28127 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 99
28126 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 298
28125 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 366
28124 Impact of Depreciation Technique on Taxable Income and Financial Performance of Quoted Consumer Goods Company in Nigeria

Authors: Ibrahim Ali, Adamu Danlami Ahmed

Abstract:

This study examines the impact of depreciation on taxable income and financial performance of consumer goods companies quoted on the Nigerian stock exchange. The study adopts ex-post factor research design. Data were collected using a secondary source. The findings of the study suggest that, method of depreciation adopted in any organization influence the taxable profit. Depreciation techniques can either be: depressive, accelerative and linear depreciation. It was also recommended that consumer goods should adjust their method of depreciation to make sure an appropriate method is adopted. This will go a long way to revitalize their taxable profit.

Keywords: accelerated, linear, depressive, depreciation

Procedia PDF Downloads 285
28123 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 190
28122 Acute Bronchiolitis: Impact of an Educational Video on Mothers’ Knowledge, Attitudes, and Practices

Authors: Atitallah Sofien, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Bouyahia Olfa, Boukthir Samir

Abstract:

Introduction: Acute bronchiolitis (AB) is a real public health problem on a global and national scale. Its treatment is most often outpatient. The use of audio-visual supports, such as educational videos, is an innovation in therapeutic education in outpatient treatment. The aim of our study was to evaluate the impact of an educational video on the knowledge, attitudes, and practices of mothers of infants with AB. Methodology: This was a descriptive, analytical, and cross-sectional study with prospective data collection, including mothers of infants with AB. We assessed mothers' knowledge, attitudes, and practices regarding AB, and we created an educational video. We used a questionnaire written in Tunisian Arabic concerning sociodemographic data, mothers' knowledge and attitudes regarding AB, and their opinions on the video, as well as an observation grid to evaluate their practices on the nasopharyngeal unblocking technique. We compared the different parameters before and after watching the video. Results: We noted a statistically significant improvement in mothers' knowledge scores on AB (7.46 in the pre-test versus 14.08 in the post-test; p≤0.05), practices (12.42 in the pre-test versus 18 in the post-test; p≤0.05) and attitudes (5.86 in pre-test versus 9.02 in post-test; p≤0.05). Conclusion: The use of an educational video has a positive impact on the knowledge, practices, and attitudes of mothers towards AB.

Keywords: acute bronchiolitis, therapeutic education, mothers, educational video

Procedia PDF Downloads 69
28121 An Investigation of Sentiment and Themes from Twitter for Brexit in 2016

Authors: Anas Alsuhaibani

Abstract:

Observing debate and discussion over social media has been found to be a promising tool to investigate different types of opinion. On 23 June 2016, Brexit voters in the UK decided to depart from the EU, with 51.9% voting to leave. On Twitter, there had been a massive debate in this context, and the hashtag Brexit was allocated as number six of the most tweeted hashtags across the globe in 2016. The study aimed to investigate the sentiment and themes expressed in a sample of tweets during a political event (Brexit) in 2016. A sentiment and thematic analysis was conducted on 1304 randomly selected tweets tagged with the hashtag Brexit in Twitter for the period from 10 June 2016 to 7 July 2016. The data were coded manually into two code frames, sentiment and thematic, and the reliability of coding was assessed for both codes. The sentiment analysis of the selected sample found that 45.63% of tweets conveyed negative emotions while there were only 10.43% conveyed positive emotions. It also surprisingly resulted that 29.37% were factual tweets, where the tweeter expressed no sentiment and the tweet conveyed a fact. For the thematic analysis, the economic theme dominated by 23.41%, and almost half of its discussion was related to business within the UK and the UK and global stock markets. The study reported that the current UK government and relation to campaign themes were the most negative themes. Both sentiment and thematic analyses found that tweets with more than one opinion or theme were rare, 8.29% and 6.13%, respectively.

Keywords: Brexit, political opinion mining, social media, twitter

Procedia PDF Downloads 216
28120 Improved Performance Scheme for Joint Transmission in Downlink Coordinated Multi-Point Transmission

Authors: Young-Su Ryu, Su-Hyun Jung, Myoung-Jin Kim, Hyoung-Kyu Song

Abstract:

In this paper, improved performance scheme for joint transmission is proposed in downlink (DL) coordinated multi-point(CoMP) in case of constraint transmission power. This scheme is that serving transmission point (TP) request a joint transmission to inter-TP and selects one pre-coding technique according to channel state information(CSI) from user equipment(UE). The simulation results show that the bit error rate(BER) and throughput performances of the proposed scheme provide high spectral efficiency and reliable data at the cell edge.

Keywords: CoMP, joint transmission, minimum mean square error, zero-forcing, zero-forcing dirty paper coding

Procedia PDF Downloads 553
28119 A Comparative Assessment Method For Map Alignment Techniques

Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar

Abstract:

In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.

Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion

Procedia PDF Downloads 122
28118 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor

Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui

Abstract:

This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.

Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer

Procedia PDF Downloads 732
28117 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 356