Search results for: covariance matrix estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4186

Search results for: covariance matrix estimation

2176 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females

Authors: James Beauchemin

Abstract:

Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue, with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-groups analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women, and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation may be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population, while providing an alternative or complementary treatment option for those with current symptoms.

Keywords: yoga, mental health, incarceration, wellness

Procedia PDF Downloads 138
2175 Is the Okun's Law Valid in Tunisia?

Authors: El Andari Chifaa, Bouaziz Rached

Abstract:

The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.

Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters

Procedia PDF Downloads 315
2174 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications

Authors: Hande Yavuz, Grégory Girard, Jinbo Bai

Abstract:

Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.

Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability

Procedia PDF Downloads 231
2173 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 406
2172 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 30
2171 Improving the Electrical Conductivity of Epoxy Coating Using Carbon Nanotube by Electrodeposition Method

Authors: Mahla Zabet, Navid Zanganeh, Hafez Balavi, Farbod Sharif

Abstract:

Electrodeposition is a method for applying coatings with uniform thickness on complex objects. A conductive surface can be produced using the electrical current in this method. Carbon nanotubes are known to have high electrical conductivity and mechanical properties. In this report, NH2-multiwalled carbon nanotubes (MWCNTs) were used in epoxy resin with different weight percent. The weight percent of incorporated MWCNTS into the matrix was changed in the range of 0.6-3.6 wt% to obtain a series of electrocoatings. The electrocoats were then applied on steel substrates by a cathodic electrodeposition technique. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the electrocoated films. The results illustrated the increase in conductivity by increasing of MWCNT load. However, at the percolation threshold, throwing power was dropped with increase in recoating ability.

Keywords: electrodeposition, carbon nanotube, electrical conductivity, throwing power

Procedia PDF Downloads 411
2170 Fracture Properties Investigation of Artocarpus odoratissimus Composite with Polypropylene (PP)

Authors: M. Kamal M. Shah, Al Fareez Bin Aslie, O. Irma Wani, J. Sahari

Abstract:

Wood plastic composites (WPC) were made using matrix of polypropylene (PP) thermoplastic resin with wood fiber from Artocarpus Odoratissimus as filler. The purpose of this project is to investigate the fracture properties of Artocarpus odoratissimus composite with PP. The WPC were manufactured by hot-press technique with varying formulations which are 10:0 (100% pure PP), 50:50 (40 g of wood fiber and 40 g of PP) and 60:40 (48 g of wood fiber and 32 g of PP). The mechanical properties were investigated. Tensile and flexural were carried out according to ASTM D 638 and ASTM D 790. The results were analysed to calculate the tensile strength. Tensile strength at break is ranged from 13.2 N/mm2 to 21.7 N/mm2 while, the flexural strength obtained is varying from 14.7 N/mm2 to 31.1 N/mm2. The results of the experiment showed that tensile and flexural properties of the composite were increased with the adding of wood fiber material. Finally, the Scanning Electron Microscope (SEM), have been done to study the fracture behavior of the WPC specimens.

Keywords: Artocarpus odoratissimus, polypropylene thermoplastic, wood fiber, WPC

Procedia PDF Downloads 397
2169 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 22
2168 Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing

Authors: H. Samadiyeh, R. Khajavi

Abstract:

A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples.

Keywords: Finite Difference Method, Graphics Processing Unit (GPU), Message Passing Interface (MPI), Modal, Wave propagation

Procedia PDF Downloads 294
2167 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 307
2166 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 344
2165 In-Situ LDH Formation of Sodium Aluminate Activated Slag

Authors: Tao Liu, Qingliang Yu, H. J. H. Brouwers

Abstract:

Among the reaction products in the alkali-activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that use the different dosages of sodium aluminate to activate slag, consequently promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide-activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS was increased by the aluminate dosages.

Keywords: ground granulated blast furnace slag, sodium aluminate activated slag, in-situ LDH formation, chloride absorption

Procedia PDF Downloads 266
2164 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 307
2163 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 169
2162 Theta-Phase Gamma-Amplitude Coupling as a Neurophysiological Marker in Neuroleptic-Naive Schizophrenia

Authors: Jun Won Kim

Abstract:

Objective: Theta-phase gamma-amplitude coupling (TGC) was used as a novel evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. However, to our best knowledge, no studies have reported the diagnostic utility of the TGC in the resting-state electroencephalographic (EEG) of neuroleptic-naive patients with schizophrenia compared to healthy controls. Thus, the purpose of this EEG study was to understand the underlying mechanisms in patients with schizophrenia by comparing the TGC at rest between two groups and to evaluate the diagnostic utility of TGC. Method: The subjects included 90 patients with schizophrenia and 90 healthy controls. All patients were diagnosed with schizophrenia according to the criteria of Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) by two independent psychiatrists using semi-structured clinical interviews. Because patients were either drug-naïve (first episode) or had not been taking psychoactive drugs for one month before the study, we could exclude the influence of medications. Five frequency bands were defined for spectral analyses: delta (1–4 Hz), theta (4–8 Hz), slow alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30-80 Hz). The spectral power of the EEG data was calculated with fast Fourier Transformation using the 'spectrogram.m' function of the signal processing toolbox in Matlab. An analysis of covariance (ANCOVA) was performed to compare the TGC results between the groups, which were adjusted using a Bonferroni correction (P < 0.05/19 = 0.0026). Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of the TGC data for schizophrenia diagnosis. Results: The patients with schizophrenia showed a significant increase in the resting-state TGC at all electrodes. The delta, theta, slow alpha, fast alpha, and beta powers showed low accuracies of 62.2%, 58.4%, 56.9%, 60.9%, and 59.0%, respectively, in discriminating the patients with schizophrenia from the healthy controls. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, displaying an overall classification accuracy of 92.5%. Conclusion: As TGC includes phase, which contains information about neuronal interactions from the EEG recording, TGC is expected to be useful for understanding the mechanisms the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The resting-state TGC value was increased in the patients with schizophrenia compared to that in the healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Further research exploring the association between TGC and medical or psychiatric conditions that may confound EEG signals will help clarify the potential utility of TGC.

Keywords: quantitative electroencephalography (QEEG), theta-phase gamma-amplitude coupling (TGC), schizophrenia, diagnostic utility

Procedia PDF Downloads 140
2161 LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model

Authors: Yan-Ren Chen, Jenn-Kaie Lain

Abstract:

This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation.

Keywords: indoor positioning, received signal strength, trilateration, visible light communications

Procedia PDF Downloads 409
2160 Diagnostic Evaluation of Micro Rna (miRNA-21, miRNA-215 and miRNA-378) in Patients with Colorectal Cancer

Authors: Ossama Abdelmotaal, Olfat Shaker, Tarek Salman, Lamiaa Nabeel, Mostafa Shabayek

Abstract:

Colorectal Cancer (CRC) is an important worldwide health problem. Colonoscopy is used in detecting CRC suffer from drawbacks where colonoscopy is an invasive method. This study validates easier and less time-consuming techniques to evaluate the usefulness of detecting miRNA-21, miRNA-215 and miRNA-378 in the sera of colorectal cancer patients as new diagnostic tools. This study includes malignant (Colo Rectal Cancer patients, n= 64)) and healthy (n=27) groups. The studied groups were subjected to colonoscopic examination and estimation of miRNA-21, miRNA-215 and miRNA-378 in sera by RT-PCR. miRNA-21 showed the statistically significantly highest median fold change. miRNA-378 showed statistically significantly lower value (Both showed over-expression). miRNA-215 showed the statistically significantly lowest median fold change (It showed down-regulation). Overall the miRNA (21-215 and 378) appear to be promising method of detecting CRC and evaluating its stages.

Keywords: colorectal cancer, miRNA-21, miRNA-215, miRNA-378

Procedia PDF Downloads 299
2159 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 69
2158 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 134
2157 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: swirl gripper, noncontact handling, levitation, gap height estimation

Procedia PDF Downloads 132
2156 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index

Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin

Abstract:

As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.

Keywords: Baidu Index, big data, internet attention, tourism

Procedia PDF Downloads 122
2155 Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method

Authors: Ming-Chu Yin, Ping-An Du

Abstract:

The shielding ability of a shielding cavity is affected greatly by its resonances, which include resonance modes and frequencies. The equivalent circuit method and numerical method of transmission line matrix (TLM) are used to analyze the effect of aperture-cavity coupling on electromagnetic resonances of a cavity with an aperture in this paper. Both theoretical and numerical results show that the resonance modes of a shielding cavity with an aperture can be considered as the combination of cavity and aperture inherent resonance modes with resonance frequencies shifting, and the reason of this shift is aperture-cavity coupling. Because aperture sizes are important parameters to aperture-cavity coupling, variation rules of electromagnetic resonances of a shielding cavity with its aperture sizes are given, which will be useful for the design of shielding cavities.

Keywords: aperture-cavity coupling, equivalent circuit method, resonances, shielding equipment

Procedia PDF Downloads 443
2154 Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert

Authors: Mohsen Marani Barzani, Ahmed A. D. Sarhan, Saeed Farahany, Ramesh Singh

Abstract:

Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.

Keywords: strontium, surface roughness, chip, morphology, turning

Procedia PDF Downloads 384
2153 Knowledge Management in Practice: An Exploratory Study Applied to Consulting Firms

Authors: Evgeniya Ivanova

Abstract:

Nowadays, in the literature, there is still no fixed definition of knowledge management that often remains only as an academic discipline. The current market situation is changing very quickly, the need of new technologies is high, and knowledge management is the area that ensures that the know-how has not been lost during market development and adoption. The study examines how knowledge management is being leveraged and practiced in the management consultancy companies and provides not only the tips and best practices of applied knowledge management approaches but also the validation matrix for its successful or unsuccessful implementation. Different knowledge management approaches are explored on the basis of their practical implementation, including related challenges, knowledge sharing process, and barriers that are typical for consulting firms mostly driven by the agile working culture. The relevance of proposed topic is confirmed by the finding that corporate working culture and the exponentially developing technologies have a direct impact on the success of practical implementation of knowledge management.

Keywords: knowledge management, knowledge management in practice, consulting firm, knowledge management success

Procedia PDF Downloads 200
2152 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 394
2151 A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities

Authors: K. Allaw, J. Adjizian Gerard, M. Chehayeb, A. Raad, W. Fahs, A. Badran, A. Fakherdin, H. Madi, N. Badaro Saliba

Abstract:

Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors.

Keywords: remote sensing, GIS, permanent residence, decision tree, Lebanon

Procedia PDF Downloads 131
2150 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin

Authors: Naci Büyükkaracığan

Abstract:

Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.

Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution

Procedia PDF Downloads 270
2149 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers

Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar

Abstract:

Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.

Keywords: polyvinyl chloride, PVC foam, PVC composites, polymer composites, glass fiber composites, reinforced polymers

Procedia PDF Downloads 394
2148 Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices

Authors: Shubham Jaiswal

Abstract:

In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term.

Keywords: two-dimensional solute transport system, spectral collocation method, Chebyshev polynomials, Chebyshev differentiation matrix

Procedia PDF Downloads 230
2147 Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study

Authors: B. Zerouali, M. Kara, B. Hamaidi, H. Mahdjoub, S. Rouabhia

Abstract:

In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios.

Keywords: bayesian networks, crude oil tank, fault tree, prediction, safety

Procedia PDF Downloads 660