Search results for: charge storage
867 Response of Selected Echocardiographic Features to Aerobic Training in Obese Hypertensive Males
Authors: Abeer Ahmed Abdelhameed
Abstract:
The aim of this study was to investigate the effect of aerobic exercises on LV parameters, lipid profile, and anthropometric measurements in hypertensive middle aged male subjects. Thirty obese patients were recruited for the study from the outpatient clinic of National Heart Institute, Egypt. Their ages ranges from 40 to 60 years. All participants underwent an aerobic training program including regular aerobic sub-maximal exercises in the form of treadmill walking and abdominal exercises 3/week for four months, the exercise were individually tailored for each participant depending on the result of cardiopulmonary exercise test. The result showed no significant difference observed in both LVPWT and LVSWT data from pre-test values to post-test values in all subjects after 4 months, with a significant reduction in WHR, systolic blood pressure, TAG and LDL records. Result also revealed a significant increase in HDL, Eƒ, LVEDD and FS records for all participants. The significant improvement in ventricular functions in form of ejection fraction of electrical group more than exercise group after 4 months at the end of the study may be due to the beneficial effect of faradic stimulation in lipolysis of storage adipose tissues, stimulation of lean body mass and muscles and/or thermal effect that improves vascularization.Keywords: left ventricular parameters, aerobic training, electrical stimulation, lipid profile
Procedia PDF Downloads 254866 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis
Authors: Mangaka C. Matoetoe, Fredrick O. Okumu
Abstract:
Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.Keywords: kinetics, morphology, nanoparticles, platinum, silver
Procedia PDF Downloads 401865 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems
Authors: Nabil Mezhoud
Abstract:
The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm
Procedia PDF Downloads 76864 Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red
Authors: Mandeep Kataria, Ritu Narula, Navneet Kaur
Abstract:
Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices.Keywords: fiber optic biosensor, chitosan, teos, l-asparaginase
Procedia PDF Downloads 289863 Citrullinated Myelin Basic Protein Mediated Inflammation in Astrocytes
Authors: Lali Shanshiashvili, Marika Chikviladze, Nino Mamulashvili, Maia Sepashvili, Nana Narmania, David Mikeladze
Abstract:
Purpose: During demyelinating inflammatory diseases and after the damage of the myelin sheet, myelin-derived proteins, including myelin basic protein (MBP), are secreted into the extracellular space. MBP shows extensive post-translational modifications, including the deimination of arginine residues. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than the unmodified one. It is hypothesized that MBP could change the inflammatory response in astrocytes. Methods: MBP was isolated and purified from bovine brain white matter. Primary astrocyte cultures were prepared from whole brains of 2-day-old Wistar rats. For evaluation of glutamate uptake/release in astrocytes following treatment of cells with MBP charge isomers, Glutamate Assay Kit was used. The expression of EAAT-2 (excitatory amino acid transporters), peroxisome proliferator-activated receptor gamma (PPAR- γ), inhibitor of nuclear factor kappa B (IkB), and high mobility group protein B1 (HMGB1) in astrocytes were assayed by Western Blot analysis. Results: This study investigated the action of deiminated isomer (C8) on the cultured primary astrocytes and compared its effects with the effects of unmodified C1 isomers. The study found that C8 and C1 MBP differently act on the uptake and release of glutamate in astrocytes: nonmodified C1 MBP increases the uptake of glutamate and does not change the release, whereas C8 decreases the release of glutamate but does not alter the uptake. Nevertheless, both isomers increased the expression of PPAR-γ and EAAT2 in the same intensity. However, immunostaining and Western Blots of cell lysates showed a decrease of IkB and increased expression of HMGB1 after the treatment of astrocytes by C8. Moreover, in the presence of C8, astrocytes release more nitric oxide than unmodified C1 isomers. Conclusion: These data suggest that the deiminated isomer of MBP evokes an inflammatory response and enhances the ability of astrocytes to release proinflammatory mediators through activation of NF-kB after the breakdown of myelin sheets. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.Keywords: myelin basic protein, glutamate, deimination, astrocytes, inflammation
Procedia PDF Downloads 205862 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing
Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta
Abstract:
Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay
Procedia PDF Downloads 54861 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System
Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan
Abstract:
Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor
Procedia PDF Downloads 227860 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering
Authors: Les Moncrieff
Abstract:
In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management
Procedia PDF Downloads 80859 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting
Authors: Vishwas Goel, Kapil Surve, Somnath Basu
Abstract:
In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.Keywords: alloying element, chromite, electro-slag remelting, ferrochrome
Procedia PDF Downloads 223858 Determination of Multidrug-Resistant Livestock Associated Bacteria from Goats, Cows, and Buffaloes in Pokhara Kaski
Authors: Ganga Sagar Bhattarai, Swastika Gurung
Abstract:
Antibiotics were being misused in both humans and animals, which led to the development of multidrug-resistant microorganisms. Antibiotic abuse is likely rampant among goats, cows, and buffaloes in order to boost growth and reduce production losses. The aim of this study is to know the multidrug resistance (MDR) bacteria in goats, cows, and buffaloes. Out of 68 samples that were examined, S. aureus, Bacillus spp., E. coli, Shigella spp., Klebsiella spp., S. epidremidis, and Salmonella spp. were isolated. S. aureus was the highest isolated bacteria (91.17%), Bacillus spp. (61.76%), E. coli (48.52%), Shigella spp. (22.05%), Klebsiella spp. (17.64%), S. epidermidis (13.23%), and the Salmonella spp. (7.35%). Salmonella spp. and E. coli showed multidrug resistance to at least four antibiotics, including Amoxicillin, Tetracycline, Piperacillin, and Ciprofloxacin, in Salmonella and to at least three antibiotics, including Amoxicillin, Tetracycline, and Nalidic acid. The highest resistance bacteria Salmonella spp. showed (57.14%) E. coli and Bacillus spp. showed (42.85%) S. aureus, S. epidermidis, and Shigella spp. showed (28.57%), and Klebsiella spp. showed (14.28%). This study showed that antibiotic-resistant bacteria with high levels of Amoxicillin, Penicillin, and Tetracycline resistance are present in healthy farm animals such as goats, cows, and buffaloes. Options for antibiotic therapy in both humans and animals will likely be limited as a result. The use, distribution, storage, and sale of antibiotics in veterinary practices must consequently be under strict control.Keywords: multidrug resistance, multidrug resistance bacteria, susceptibility testing, bacterial infections
Procedia PDF Downloads 107857 Evolution of Bioactive Components of Prickly Pear Juice (Opuntia ficus indica) and Cocktails with Orange Juice
Authors: T. Hadj Sadok, R. Hattab Bey, K. Rebiha
Abstract:
The valuation of juice from prickly pear of Opuntia ficus indica inermis as cocktails appears an attractive alternative because of their nutritional intake and functional compound has anti-radical activity (polyphenols, vitamin C, carotenoids, Betalaines, fiber and minerals). The juice from the fruit pulp is characterized by a high pH 5.85 which makes it difficult for its conservation and preservation requires a thermal treatment at high temperatures (over 100 °C) harmful for bioactive constituents compared to juice orange more acidic and processed at temperatures < 100 °C. The valuation as fig cocktails-orange is particularly interesting thanks to the contribution of polyph2nols, fiber, vitamin C, reducing sugar (sweetener) and betalaine, minerals while allowing lower temperature processing to decrease pH. The heat treatment of these juices: orange alone or in cocktails showed that the antioxidant power decreases by 12% in presence of 30% of juice treated by the heat and of 28 and 32% in the presence of 10 and 20% juice which shows the effect prickly pear juice of Opuntia. During storage for 4 weeks the loss of vitamin C is 40 and 38% in the presence of 10 and 20% juice and 33% in the presence of 30% pear juice parallel, a treatment of stabilization by heat affects relatively the polyphenols rate which decreases from 10.5% to 30% in the cocktail, and 6.11-6.71pour cocktails at 10% and 20%. Vitamin C decreases to 12 to 24 % after a heat treatment at 85°C for 30 minutes respectively for the orange juice and pear juice; this reduction is higher when the juice is in the form of cocktails composed of 10 to 30 % pear juice.Keywords: prickly pear juice, orange cocktail, polyphenol, Opuntia ficus indica, vitamin
Procedia PDF Downloads 380856 Analysis of Construction Waste Generation and Its Effect in a Construction Site
Authors: R. K. D. G. Kaluarachchi
Abstract:
The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.Keywords: construction-waste, effective management, reduce, reuse
Procedia PDF Downloads 202855 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 465854 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 147853 Climate Related Financial Risk on Automobile Industry and the Impact to the Financial Institutions
Authors: Mahalakshmi Vivekanandan S.
Abstract:
As per the recent changes happening in the global policies, climate-related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate-related changes can often happen and lead to risk and a lot of uncertainty, but needs to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed so that the financial institutions can plan to mitigate it. Climate-related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and other risk types. And the models required to compute this has to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out the suggestion that the climate-related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, the author presents a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios and how the different transition risks affect the risk associated with the different parties. This research paper delves into the topic of the increase in the concentration of greenhouse gases that in turn cause global warming. It then considers the various scenarios of having the different risk drivers impacting the Credit and market risk of an institution by understanding the transmission channels and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: the automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II Capital calculations and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.Keywords: capital calculation, climate risk, credit risk, pillar ii risk, scenario modeling
Procedia PDF Downloads 140852 A Review of Sustainable Energy-Saving Solutions in Active and Passive Solar Systems of Zero Energy Buildings Based on the Internet of Things
Authors: Hanieh Sadat Jannesari, Hoori Jannesar, Alireza Hajian HosseinAbadi
Abstract:
In general, buildings are responsible for a considerable share of consumed energy and carbon emissions worldwide and play a significant role in formulating sustainable development strategies. Therefore, a lot of effort is put into the design and construction of zero-energy buildings (ZEBs) to help eliminate the problems associated with the reduction of energy resources and environmental degradation. Two strategies are significant in designing ZEBs: minimizing the need for energy utilization in buildings (particularly for cooling and heating) through highly energy-efficient designs and using renewable energies and other technologies to meet the remaining energy needs. This paper reviews the works related to these two strategies concerning sustainable energy-saving solutions using renewable energy technologies and the Internet of Things in ZEBs. Drawing on the theories and recently implemented projects of energy engineers in ZEBs, we have reported the required technologies within the framework of this paper’s objectives. Overall, solutions based on renewable and sustainable technologies such as photovoltaic (PV) modules, thermal collectors, Phase Change Material (PCM) techniques, etc., are used in active and passive systems designed for various applications in such buildings as cooling, heating, lighting, cooking, etc. The results obtained from examining these projects show that it is possible to minimize the amount of energy required to be produced for and consumed by these buildings.Keywords: active and passive renewable energy systems, internet of things, storage, zero energy buildings
Procedia PDF Downloads 29851 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 26850 Role of the Marshes in the Natural Decontamination of Surface Water: A Case of the Redjla Marsh, North-Eastern Algerian
Authors: S. Benessam, T. H. Debieche, A. Drouiche, S. Mahdid, F. Zahi
Abstract:
The marsh is the impermeable depression. It is not very deep and presents the stagnant water. Their water level varies according to the contributions of water (rain, groundwater, stream etc.), when this last reaches the maximum level of the marsh, it flows towards the downstream through the discharge system. The marsh accumulates all the liquid and solid contributions of upstream part. In the North-East Algerian, the Redjla marsh is located on the course of the Tassift river. Its contributions of water come from the upstream part of the river, often characterized by the presence of several pollutants in water related to the urban effluents, and its discharge system supply the downstream part of the river. In order to determine the effect of the marsh on the water quality of the river this study was conducted. A two-monthly monitoring of the physicochemical parameters and water chemistry of the river were carried out, before and after the marsh, during the period from November 2013 to January 2015. The results show that the marsh plays the role of a natural purifier of water of Tassift river, present by drops of conductivity and concentration of the pollutants (ammonium, phosphate, iron, chlorides and bicarbonates) between the upstream part and downstream of the marsh. That indicates that these pollutants are transformed with other chemical forms (case of ammonium towards nitrate), precipitated in complex forms or/and adsorbed by the sediments of the marsh. This storage of the pollutants in the ground of the marsh will be later on a source of pollution for the plants and river water.Keywords: marsh, natural purification, urban pollution, nitrogen
Procedia PDF Downloads 263849 The Probability of Smallholder Broiler Chicken Farmers' Participation in the Mainstream Market within Maseru District in Lesotho
Authors: L. E. Mphahama, A. Mushunje, A. Taruvinga
Abstract:
Although broiler production does not generate any large incomes among the smallholder community, it represents the main source of livelihood and part of nutritional requirement. As a result, market for broiler meat is growing faster than that of any other meat products and is projected to continue growing in the coming decades. However, the implication is that a multitude of factors manipulates transformation of smallholder broiler farmers participating in the mainstream markets. From 217 smallholder broiler farmers, socio-economic and institutional factors in broiler farming were incorporated into Binary model to estimate the probability of broiler farmers’ participation in the mainstream markets within the Maseru district in Lesotho. Of the thirteen (13) predictor variables fitted into the model, six (6) variables (household size, number of years in broiler business, stock size, access to transport, access to extension services and access to market information) had significant coefficients while seven (7) variables (level of education, marital status, price of broilers, poultry association, access to contract, access to credit and access to storage) did not have a significant impact. It is recommended that smallholder broiler farmers organize themselves into cooperatives which will act as a vehicle through which they can access contracts and formal markets. These cooperatives will also enable easy training and workshops for broiler rearing and marketing/markets through extension visits.Keywords: broiler chicken, mainstream market, Maseru district, participation, smallholder farmers
Procedia PDF Downloads 152848 Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization
Authors: Siti N. M. Rozali, A. H. J. Paterson, J. P. Hindmarsh
Abstract:
Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions.Keywords: extensional rheology, fibre suspensions, portable extensional rheometer, shear rheology
Procedia PDF Downloads 204847 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators
Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang
Abstract:
High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.Keywords: electron guns, high voltage techniques, insulators, vacuum insulation
Procedia PDF Downloads 113846 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application
Authors: Bo Jin
Abstract:
A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing
Procedia PDF Downloads 137845 Leachate Discharges: Review Treatment Techniques
Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb
Abstract:
During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.Keywords: landfill leachate, landfill pollution, impact, wastewater
Procedia PDF Downloads 90844 Use of Waste Active Sludge for Reducing Fe₂O₃
Authors: A. Parra Parra, M. Vlasova, P. A. Marquez, M. Kakazey, M. C. Resendiz Gonzalez
Abstract:
The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides.Keywords: carbothermal reduction, Fe₂O₃, FeₓOᵧ-C, waste activated sludge
Procedia PDF Downloads 134843 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 73842 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 328841 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications
Authors: Noureddine Ramdani
Abstract:
In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding
Procedia PDF Downloads 86840 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 338839 Mixed Matrix Membranes Based on [M₂(DOBDC)] (M = Mg, Co, Ni) and Polydimethylsiloxane for CO₂/N₂ Separation
Authors: Hyunuk Kim, Yang No Yun, Muhammad Sohail, Jong-Ho Moon, Young Cheol Park
Abstract:
Metal-organic frameworks (MOFs), which are emerging absorbents assembled from metal ions and organic ligands, have attracted attention for their permanent porosity and design of tunable pore size. These microporous materials showed interesting properties for CO₂ storage and separation. In particular, MOFs with high surface area and open metal sites showed the remarkable adsorption capacity and selectivity for CO₂. [Mg₂ (DOBDC)] (DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) (MOF-74 or CPO-27) is a well-known absorbent showing an exceptionally high CO₂ sorption capacity at low partial pressure and room temperature. In this work, we synthesized [M₂(DOBDC)(DMF)₂] (M = Mg, Co, Ni) and determined their single-crystal structures by X-ray crystallography. The removal of coordinated guest molecules generates Lewis acidic sites and showed high CO₂ adsorption affinity. Both CO₂ adsorption capacity and surface area are much higher than reported values in literature. To fabricate MMMs, microcrystalline [M₂ (DOBDC)(DMF)₂] was synthesized by microwave reaction and dispersed in PDMS solution. The MMMs with a various amount of [M₂ (DOBDC)(DMF) ₂] in PDMS were fabricated by a solution casting method. [M₂ (DOBDC)(DMF)₂]@PDMS membrane showed higher CO2 permeability and CO₂/N₂ selectivity than those of PDMS. Therefore, we believe that MMMs combining polymer and MOFs provide new materials for CO₂ separation technology.Keywords: metal-organic frameworks, mixed matrix membrane, CO2/N2 separation, polydimethylsiloxane (PDMS)
Procedia PDF Downloads 206838 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities
Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav
Abstract:
The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks
Procedia PDF Downloads 22