Search results for: cardio data analysis
40118 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 36740117 Acoustic Modeling of a Data Center with a Hot Aisle Containment System
Authors: Arshad Alfoqaha, Seth Bard, Dustin Demetriou
Abstract:
A new multi-physics acoustic modeling approach using ANSYS Mechanical FEA and FLUENT CFD methods is developed for modeling servers mounted to racks, such as IBM Z and IBM Power Systems, in data centers. This new approach allows users to determine the thermal and acoustic conditions that people are exposed to within the data center. The sound pressure level (SPL) exposure for a human working inside a hot aisle containment system inside the data center is studied. The SPL is analyzed at the noise source, at the human body, on the rack walls, on the containment walls, and on the ceiling and flooring plenum walls. In the acoustic CFD simulation, it is assumed that a four-inch diameter sphere with monopole acoustic radiation, placed in the middle of each rack, provides a single-source representation of all noise sources within the rack. Ffowcs Williams & Hawkings (FWH) acoustic model is employed. The target frequency is 1000 Hz, and the total simulation time for the transient analysis is 1.4 seconds, with a very small time step of 3e-5 seconds and 10 iterations to ensure convergence and accuracy. A User Defined Function (UDF) is developed to accurately simulate the acoustic noise source, and a Dynamic Mesh is applied to ensure acoustic wave propagation. Initial validation of the acoustic CFD simulation using a closed-form solution for the spherical propagation of an acoustic point source is performed.Keywords: data centers, FLUENT, acoustics, sound pressure level, SPL, hot aisle containment, IBM
Procedia PDF Downloads 17640116 Parallel Vector Processing Using Multi Level Orbital DATA
Authors: Nagi Mekhiel
Abstract:
Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing
Procedia PDF Downloads 27040115 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin
Authors: Naci Büyükkaracığan
Abstract:
Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution
Procedia PDF Downloads 27140114 Investigation of the Main Trends of Tourist Expenses in Georgia
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors. We used mixed technique of selection that implies rules of random and proportional selection. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from the major Georgian airports. Techniques of statistical observation were prepared. A representative population of foreign visitors and a rule of selection of respondents were determined. We have a trend of growth of tourist numbers and share of tourists from post-soviet countries constantly increases. Level of satisfaction with tourist facilities and quality of service has grown, but still we have a problem of disparity between quality of service and prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher.Keywords: tourist, expenses, methods, statistics, analysis
Procedia PDF Downloads 33740113 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector
Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau
Abstract:
Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement
Procedia PDF Downloads 19840112 Data Analytics in Hospitality Industry
Authors: Tammy Wee, Detlev Remy, Arif Perdana
Abstract:
In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing
Procedia PDF Downloads 18040111 Retrospective Demographic Analysis of Patients Lost to Follow-Up from Antiretroviral Therapy in Mulanje Mission Hospital, Malawi
Authors: Silas Webb, Joseph Hartland
Abstract:
Background: Long-term retention of patients on ART has become a major health challenge in Sub-Saharan Africa (SSA). In 2010 a systematic review of 39 papers found that 30% of patients were no longer taking their ARTs two years after starting treatment. In the same review, it was noted that there was a paucity of data as to why patients become lost to follow-up (LTFU) in SSA. This project was performed in Mulanje Mission Hospital in Malawi as part of Swindon Academy’s Global Health eSSC. The HIV prevalence for Malawi is 10.3%, one of the highest rates in the world, however prevalence soars to 18% in the Mulanje. Therefore it is essential that patients at risk of being LTFU are identified early and managed appropriately to help them continue to participate in the service. Methodology: All patients on adult antiretroviral formulations at MMH, who were classified as ‘defaulters’ (patients missing a scheduled follow up visit by more than two months) over the last 12 months were included in the study. Demographic varibales were collected from Mastercards for data analysis. A comparison group of patients currently not lost to follow up was created by using all of the patients who attended the HIV clinic between 18th-22nd July 2016 who had never defaulted from ART. Data was analysed using the chi squared (χ²) test, as data collected was categorical, with alpha levels set at 0.05. Results: Overall, 136 patients had defaulted from ART over the past 12 months at MMH. Of these, 43 patients had missing Mastercards, so 93 defaulter datasets were analysed. In the comparison group 93 datasets were also analysed and statistical analysis done using Chi-Squared testing. A higher proportion of men in the defaulting group was noted (χ²=0.034) and defaulters tended to be younger (χ²=0.052). 94.6% of patients who defaulted were taking Tenofovir, Lamivudine and Efavirenz, the standard first line ART therapy in Malawi. The mean length of time on ART was 39.0 months (RR: -22.4-100.4) in the defaulters group and 47.3 months (RR: -19.71-114.23) in the control group, with a mean difference of 8.3 less months in the defaulters group (χ ²=0.056). Discussion: The findings in this study echo the literature, however this review expands on that and shows the demographic for the patient at most risk of defaulting and being LTFU would be: a young male who has missed more than 4 doses of ART and is within his first year of treatment. For the hospital, this data is important at it identifies significant areas for public health focus. For instance, fear of disclosure and stigma may be disproportionately affecting younger men, so interventions can be aimed specifically at them to improve their health outcomes. The mean length of time on medication was 8.3 months less in the defaulters group, with a p-value of 0.056, emphasising the need for more intensive follow-up in the early stages of treatment, when patients are at the highest risk of defaulting.Keywords: anti-retroviral therapy, ART, HIV, lost to follow up, Malawi
Procedia PDF Downloads 18640110 On-Line Consumer Comments (E-Wom): A Case Qualitative Analysis on Resort Hotel Consumers
Authors: Yasin Bilim, Alaaddin Başoda
Abstract:
The recent growth of internet applications on hospitality and tourism provokes on-line consumer comments and reviews. Many researchers and practitioners have named this enormous potential as “e-WOM (electronic word of mouth)”. Travel comments are important experiential information for the potential travellers. Many researches have been conducted to analyse the effects of e-WOM on hotel consumers. Broadly quantitative methods have been used for analysing online comments. But, a few studies have mentioned about the positive practical aspects of the comments for hotel marketers. The study aims to show different usage and effects of hotel consumers’ comments. As qualitative analysis method, grounded theory, content and discourse analysis, were used. The data based on the 10 resort hotel consumers’ on-line comments. Results show that consumers tend to write comments about service person, rooms, food services and pool in their online space. These indicators can be used by hotel marketers as a marketing information tool.Keywords: comments, E-WOM, hotel consumer, qualitative
Procedia PDF Downloads 22740109 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments
Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic
Abstract:
Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).Keywords: Croatia, forest fire, geospatial analysis, hydrological response
Procedia PDF Downloads 13640108 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers
Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran
Abstract:
With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.Keywords: optical fiber, multi-mode, data centers, encircled flux
Procedia PDF Downloads 37540107 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM
Authors: Byeong-Sam Kim, Jongmin Park
Abstract:
The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures
Procedia PDF Downloads 35840106 Cluster Analysis of Students’ Learning Satisfaction
Authors: Purevdolgor Luvsantseren, Ajnai Luvsan-Ish, Oyuntsetseg Sandag, Javzmaa Tsend, Akhit Tileubai, Baasandorj Chilhaasuren, Jargalbat Puntsagdash, Galbadrakh Chuluunbaatar
Abstract:
One of the indicators of the quality of university services is student satisfaction. Aim: We aimed to study the level of satisfaction of students in the first year of premedical courses in the course of Medical Physics using the cluster method. Materials and Methods: In the framework of this goal, a questionnaire was collected from a total of 324 students who studied the medical physics course of the 1st course of the premedical course at the Mongolian National University of Medical Sciences. When determining the level of satisfaction, the answers were obtained on five levels of satisfaction: "excellent", "good", "medium", "bad" and "very bad". A total of 39 questionnaires were collected from students: 8 for course evaluation, 19 for teacher evaluation, and 12 for student evaluation. From the research, a database with 39 fields and 324 records was created. Results: In this database, cluster analysis was performed in MATLAB and R programs using the k-means method of data mining. Calculated the Hopkins statistic in the created database, the values are 0.88, 0.87, and 0.97. This shows that cluster analysis methods can be used. The course evaluation sub-fund is divided into three clusters. Among them, cluster I has 150 objects with a "good" rating of 46.2%, cluster II has 119 objects with a "medium" rating of 36.7%, and Cluster III has 54 objects with a "good" rating of 16.6%. The teacher evaluation sub-base into three clusters, there are 179 objects with a "good" rating of 55.2% in cluster II, 108 objects with an "average" rating of 33.3% in cluster III, and 36 objects with an "excellent" rating in cluster I of 11.1%. The sub-base of student evaluations is divided into two clusters: cluster II has 215 objects with an "excellent" rating of 66.3%, and cluster I has 108 objects with an "excellent" rating of 33.3%. Evaluating the resulting clusters with the Silhouette coefficient, 0.32 for the course evaluation cluster, 0.31 for the teacher evaluation cluster, and 0.30 for student evaluation show statistical significance. Conclusion: Finally, to conclude, cluster analysis in the model of the medical physics lesson “good” - 46.2%, “middle” - 36.7%, “bad” - 16.6%; 55.2% - “good”, 33.3% - “middle”, 11.1% - “bad” in the teacher evaluation model; 66.3% - “good” and 33.3% of “bad” in the student evaluation model.Keywords: questionnaire, data mining, k-means method, silhouette coefficient
Procedia PDF Downloads 5040105 Realization of a (GIS) for Drilling (DWS) through the Adrar Region
Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz
Abstract:
Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.Keywords: GIS, DWS, drilling, Adrar
Procedia PDF Downloads 30940104 Generic Data Warehousing for Consumer Electronics Retail Industry
Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel
Abstract:
The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry
Procedia PDF Downloads 41340103 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study
Authors: K. Debkowska
Abstract:
The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.Keywords: business models, components of business models, data analysis, fsQCA
Procedia PDF Downloads 17140102 One Plus One is More than Two: Why Nurse Recruiters Need to Use Various Multivariate Techniques to Understand the Limitations of the Concept of Emotional Intelligence
Authors: Austyn Snowden
Abstract:
Aim: To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Background: Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Design: Secondary analysis of existing dataset of responses to TEIQue-SF using concurrent application of Rasch analysis and confirmatory factor analysis. Method: First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis.Keywords: emotional intelligence, rasch analysis, factor analysis, nurse recruiters
Procedia PDF Downloads 46640101 Energy Interaction among HVAC and Supermarket Environment
Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu
Abstract:
Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.Keywords: energy interaction, HVAC, R-value, supermarket buildings
Procedia PDF Downloads 42840100 Social Media Resignation the Only Way to Protect User Data and Restore Cognitive Balance, a Literature Review
Authors: Rajarshi Motilal
Abstract:
The birth of the Internet and the rise of social media marked an important chapter in the history of humankind. Often termed the fourth scientific revolution, the Internet has changed human lives and cognisance. The birth of Web 2.0, followed by the launch of social media and social networking sites, added another milestone to these technological advancements where connectivity and influx of information became dominant. With billions of individuals using the internet and social media sites in the 21st century, “users” became “consumers”, and orthodox marketing reshaped itself to digital marketing. Furthermore, organisations started using sophisticated algorithms to predict consumer purchase behaviour and manipulate it to sustain themselves in such a competitive environment. The rampant storage and analysis of individual data became the new normal, raising many questions about data privacy. The excessive usage of the Internet among individuals brought in other problems of them becoming addicted to it, scavenging for societal approval and instant gratification, subsequently leading to a collective dualism, isolation, and finally, depression. This study aims to determine the relationship between social media usage in the modern age and the rise of psychological and cognitive imbalances in human minds. The literature review is positioned timely as an addition to the existing work at a time when the world is constantly debating on whether social media resignation is the only way to protect user data and restore the decaying cognitive balance.Keywords: social media, digital marketing, consumer behaviour, internet addiction, data privacy
Procedia PDF Downloads 7640099 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current
Authors: Lei Ren, Michael Hartnett, Stephen Nash
Abstract:
The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion
Procedia PDF Downloads 57440098 A Meta Regression Analysis to Detect Price Premium Threshold for Eco-Labeled Seafood
Authors: Cristina Giosuè, Federica Biondo, Sergio Vitale
Abstract:
In the last years, the consumers' awareness for environmental concerns has been increasing, and seafood eco-labels are considered as a possible instrument to improve both seafood markets and sustainable fishing management. In this direction, the aim of this study was to carry out a meta-analysis on consumers’ willingness to pay (WTP) for eco-labeled wild seafood, by a meta-regression. Therefore, only papers published on ISI journals were searched on “Web of Knowledge” and “SciVerse Scopus” platforms, using the combinations of the following key words: seafood, ecolabel, eco-label, willingness, WTP and premium. The dataset was built considering: paper’s and survey’s codes, year of publication, first author’s nationality, species’ taxa and family, sample size, survey’s continent and country, data collection (where and how), gender and age of consumers, brand and ΔWTP. From analysis the interest on eco labeled seafood emerged clearly, in particular in developed countries. In general, consumers declared greater willingness to pay than that actually applied for eco-label products, with difference related to taxa and brand.Keywords: eco label, meta regression, seafood, willingness to pay
Procedia PDF Downloads 12240097 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 15440096 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis
Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif
Abstract:
Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling
Procedia PDF Downloads 15240095 The Development of Explicit Pragmatic Knowledge: An Exploratory Study
Authors: Aisha Siddiqa
Abstract:
The knowledge of pragmatic practices in a particular language is considered key to effective communication. Unlike one’s native language where this knowledge is acquired spontaneously, more conscious attention is required to learn second language pragmatics. Traditional foreign language (FL) classrooms generally focus on the acquisition of vocabulary and lexico-grammatical structures, neglecting pragmatic functions that are essential for effective communication in the multilingual networks of the modern world. In terms of effective communication, of particular importance is knowledge of what is perceived as polite or impolite in a certain language, an aspect of pragmatics which is not perceived as obligatory but is nonetheless indispensable for successful intercultural communication and integration. While learning a second language, the acquisition of politeness assumes more prominence as the politeness norms and practices vary according to language and culture. Therefore, along with focusing on the ‘use’ of politeness strategies, it is crucial to examine the ‘acquisition’ and the ‘acquisitional development’ of politeness strategies by second language learners, particularly, by lower proficiency leaners as the norms of politeness are usually focused in lower levels. Hence, there is an obvious need for a study that not only investigates the acquisition of pragmatics by young FL learners using innovative multiple methods; but also identifies the potential causes of the gaps in their development. The present research employs a cross sectional design to explore the acquisition of politeness by young English as a foreign language learners (EFL) in France; at three levels of secondary school learning. The methodology involves two phases. In the first phase a cartoon oral production task (COPT) is used to elicit samples of requests from young EFL learners in French schools. These data are then supplemented by a) role plays, b) an analysis of textbooks, and c) video recordings of classroom activities. This mixed method approach allows us to explore the repertoire of politeness strategies the learners possess and delve deeper into the opportunities available to learners in classrooms to learn politeness strategies in requests. The paper will provide the results of the analysis of COPT data for 250 learners at three different stages of English as foreign language development. Data analysis is based on categorization of requests developed in CCSARP project. The preliminary analysis of the COPT data shows that there is substantial evidence of pragmalinguistic development across all levels but the developmental process seems to gain momentum in the second half of the secondary school period as compared to the early period at school. However, there is very little evidence of sociopragmatic development. The study aims to document the current classroom practices in France by looking at the development of young EFL learner’s politeness strategies across three levels of secondary schools.Keywords: acquisition, English, France, interlanguage pragmatics, politeness
Procedia PDF Downloads 42440094 Structural Health Monitoring of Buildings–Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method
Procedia PDF Downloads 36840093 Design of Knowledge Management System with Geographic Information System
Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan
Abstract:
Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.Keywords: 5C4C, data, information, knowledge
Procedia PDF Downloads 46240092 Using Confirmatory Factor Analysis to Test the Dimensional Structure of Tourism Service Quality
Authors: Ibrahim A. Elshaer, Alaa M. Shaker
Abstract:
Several previous empirical studies have operationalized service quality as either a multidimensional or unidimensional construct. While few earlier studies investigated some practices of the assumed dimensional structure of service quality, no study has been found to have tested the construct’s dimensionality using confirmatory factor analysis (CFA). To gain a better insight into the dimensional structure of service quality construct, this paper tests its dimensionality using three CFA models (higher order factor model, oblique factor model, and one factor model) on a set of data collected from 390 British tourists visited Egypt. The results of the three tests models indicate that service quality construct is multidimensional. This result helps resolving the problems that might arise from the lack of clarity concerning the dimensional structure of service quality, as without testing the dimensional structure of a measure, researchers cannot assume that the significant correlation is a result of factors measuring the same construct.Keywords: service quality, dimensionality, confirmatory factor analysis, Egypt
Procedia PDF Downloads 59240091 Education for Sustainable Development and Primary Education in China: A Case Study
Authors: Ronghui (Kevin) Zhou
Abstract:
This research intends to explore the enactment of Education for Sustainable Development (ESD), in term of the ESD concept, in primary schools in China, and investigate the factors that have positively or negatively impacted the outcome of ESD in urban primary schools in China. The proposed research question is: how is the ESD concept perceived and enacted by the local education stakeholders. This research is conducted in multiple primary schools in China and has questionnaired and interviewed multiple education stakeholders, including school principals, school teachers, and bureau from the municipal Ministry of Education. Factor analysis, regression analysis, and critical discourse analysis are adopted to interpret and analyze the data. The preliminary findings suggest that contested ESD definition, education system pressures, education policy enforcement, and power dynamics between stakeholders are the key factors that have determined to what degree is ESD enacted, and to what extent is ESD practiced in primary schools in China.Keywords: education for sustainable development, China, primary education, case study
Procedia PDF Downloads 16640090 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 1140089 Major Variables Influencing Marketed Surplus of Seed Cotton in District Khanewal, Pakistan
Authors: Manan Aslam, Shafqat Rasool
Abstract:
This paper attempts to examine impact of major factors affecting marketed surplus of seed cotton in district Khanewal (Punjab) using primary source of data. A representative sample of 40 cotton farmers was selected using stratified random sampling technique. The impact of major factors on marketed surplus of seed cotton growers was estimated by employing double log form of regression analysis. The value of adjusted R2 was 0.64 whereas the F-value was 10.81. The findings of analysis revealed that experience of farmers, education of farmers, area under cotton crop and distance from wholesale market were the significant variables affecting marketed surplus of cotton whereas the variables (marketing cost and sale price) showed insignificant impact. The study suggests improving prevalent marketing practices to increase volume of marketed surplus of cotton in district Khanewal.Keywords: seed cotton, marketed surplus, double log regression analysis
Procedia PDF Downloads 307