Search results for: choice experiments (CE)
2880 MCDM Spectrum Handover Models for Cognitive Wireless Networks
Authors: Cesar Hernández, Diego Giral, Fernando Santa
Abstract:
The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR
Procedia PDF Downloads 4372879 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles
Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo
Abstract:
Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.Keywords: HRRP, NCTI, simulated/synthetic database, SVD
Procedia PDF Downloads 3542878 Analysis of Brain Activities due to Differences in Running Shoe Properties
Authors: Kei Okubo, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe
Abstract:
Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.Keywords: brain activities, NIRS, PASAT, running shoes
Procedia PDF Downloads 3732877 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone
Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng
Abstract:
Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling
Procedia PDF Downloads 3642876 Aristotle's Notion of Akratic Action through the Prism of Moral Psychology
Authors: Manik Konch
Abstract:
Actions are generally evaluated from moral point of view. Either the action is praised or condemned, but in all cases it involves the agent who performs it. The agent is held morally responsible for bringing out an action. This paper is an attempt to explore the Aristotle’s notion of action and its relation with moral development in response to modern philosophical moral psychology. Particularly, the distinction between voluntary, involuntary, and non-voluntary action in the Nicomachean Ethics with some basic problems from the perspective of moral psychology: the role of choice, moral responsibility, desire, and akrasia for an action. How to do a morally right action? Is there any role of virtue, character to do a moral action? These problems are analyzed and interpreted in order to show that the Aristotelian theory of action significantly contributes to the philosophical study of moral psychology. In this connection, the paper juxtaposes Aristotle’s theory of action with response from David Charles, John R. Searle’s, and Alfred Mele theorization of action in the mechanism of human moral behaviours. To achieve this addressed problem, we consider, how the recent moral philosophical moral psychology research can shed light on Aristotle's ethics by focusing on theory of action. In this connection, we argue that the desire is the only responsible for the akratic action. According to Aristotle, desire is primary source of action and it is the starting point of action and also the endpoint of an action. Therefore we are trying to see how desire can make a person incontinent and motivate to do such irrational actions. Is there any causes which we can say such actions are right or wrong? To measure an action we have need to see the consequences such act. Thus, we discuss the relationship between akrasia and action from the perspective of contemporary moral psychologists and philosophers whose are currently working on it.Keywords: action, desire, moral psychology, Aristotle
Procedia PDF Downloads 2602875 Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster
Authors: A. Elain, M. Le Fellic, A. Le Pemp, N. Hachet
Abstract:
Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community.Keywords: iodinated compounds, biodegradability, deiodination, electron-accepting conditions, microbial consortium
Procedia PDF Downloads 3292874 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers
Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig
Abstract:
This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion
Procedia PDF Downloads 5582873 Flow Conservation Framework for Monitoring Software Defined Networks
Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba
Abstract:
New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.Keywords: optimization, monitoring, software defined networking, statistics, query
Procedia PDF Downloads 3312872 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 1302871 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 912870 Strategic Thinking to Change Behavior and Improve Sanitation in Jodipan and Kesatrian, Malang, East Java, Indonesia
Authors: Prasanti Widyasih Sarli, Prayatni Soewondo
Abstract:
Greater access to sanitation in developing countries is urgent. However even though sanitation is crucial, overall budget for sanitation is limited. With this budget limitation, it is important to (1) allocate resources strategically to maximize impact and (2) take into account communal agency to potentially be a source for sanitation improvements. The Jodipan and Kesatrian Project in Malang, Indonesia is an interesting alternative for solving the sanitation problem in which resources were allocated strategically and communal agency was also observed. Although the projects initial goal was only to improve visually the situation in the slums, it became a new tourist destination, and the economic benefit that came with it had an effect also on the change of behavior of the residents and the government towards sanitation. It also grew from only including the Kesatrian Village to expanding to the Jodipan Village in the course of less than a year. To investigate the success of this project, in this paper a descriptive model will be used and data will be drawn from intensive interviews with the initiators of the project, residents affected by the project and government officials. In this research it is argued that three points mark the success of the project: (1) the strategic initial impact due to choice of location, (2) the influx of tourists that triggered behavioral change among residents and, (3) the direct economic impact which ensured its sustainability and growth by gaining government officials support and attention for more public spending in the area for slum development and sanitation improvement.Keywords: behaviour change, sanitation, slum, strategic thinking
Procedia PDF Downloads 3272869 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit
Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang
Abstract:
This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation
Procedia PDF Downloads 3552868 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control
Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines
Abstract:
This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.Keywords: extraction, cloud point, non ionic surfactant, bezanyl green
Procedia PDF Downloads 1262867 Study on the Carboxymethylation of Glucomannan from Porang
Authors: Fadilah Fadilah, Sperisa Distantina, Santi T. Wijayanti, Rahmawati Andayani
Abstract:
Chemical modification process on glucomannan from porang via carboxymethylation have been conducted. The process was done in two stages, the alkalization, and the carboxymethylation. The alkalization was done by adding NaOH solution into the medium which was contained glucomannan and then stirred it in ambient temperature for thirty minutes. The carboxymethylation process was done by adding sodium mono chloroacetate solution into the alkalization product. The carboxymethylation process was conducted for a certain time, and the product was then analyzed for determining the degree of substitution. In this research, the influence of medium to the degree of substitution was studied. Three different medium were used, namely water, 70% ethanol, and 90% ethanol. The results show that 70% ethanol was a better medium than two others because give a higher degree of substitution. Using 70% ethanol as a medium, the experiments for studying the influence of temperature on the carboxymethylation stages were conducted. The results show that the degree of substitution at 65°C is higher than at 45°C.Keywords: carboxymethylation, degree of substitution, ethanol medium, glucomannan
Procedia PDF Downloads 2232866 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department
Authors: Welawat Tienpratarn, Chaiyaporn Yuksen, Rungrawin Promkul, Chetsadakon Jenpanitpong, Pajit Bunta, Suthap Jaiboon
Abstract:
Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times. The clinical predictive score of > 6 was associated with recurrence PSVT in ED.Keywords: supraventricular tachycardia, recurrance, emergency department, adenosine
Procedia PDF Downloads 1172865 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 1552864 Family Firms and Investment–Cash Flow Sensitivity: Empirical Evidence from Canada
Authors: Imen Latrous
Abstract:
Family firm is the most common form of business organization in the world. Many family businesses rely heavily on their own capital to finance their expansion. This dependence on internal funds for their investment may be deliberate to maintain the family dominant position or involuntary as family firms have limited access to external funds. Our understanding of family firm’s choice to fund their own growth using existing capital is somewhat limited. The aim of this paper is to study whether the presence of a controlling family in the company either mitigates or exacerbates external financing constraints. The impact of family ownership on investment–cash flow sensitivity is ultimately an empirical question. We use a sample of 406 Canadian firms listed in Toronto Stock exchange (TSX) over the period 2005–2014 in order to explore this relationship. We distinguish between three elements in the definition of family firms, specifically ownership, control and management, to explore the issue whether family firms are more efficient organisational form. Our research contributes to the extant literature on family ownership in several ways. First, as our understanding of family firm’s investment cash flow sensitivity is somewhat limited in recession times, we explore the effect of family firms on the relation between investment and cash flow during the recent 2007-2009 financial crisis. We also analyse this relationship difference between family firms and non family firms before and during financial crisis. Finally, our paper addresses the endogeneity problem of family ownership and investment-cash flow sensitivity.Keywords: family firms, investment–cash flow sensitivity, financial crisis, corporate governance
Procedia PDF Downloads 3252863 Energy Mutual Funds: The Behavior of Environmental, Social and Governance Funds
Authors: Anna Paola Micheli, Anna Maria Calce, Loris Di Nallo
Abstract:
Sustainable finance identifies the process that leads, in the adoption of investment decisions, to take into account environmental and social factors, with the aim of orienting investments towards sustainable and long-term activities. Considering that the topic is at the center of the interest of national agendas, long-term investments will no longer be analyzed only by looking at financial data, but environmental, social, and governance (ESG) factors will be increasingly important and will play a fundamental role in determining the risk and return of an investment. Although this perspective does not deny the orientation to profit, ESG mutual funds represent sustainable finance applied to the world of mutual funds. So the goal of this paper is to verify this attitude, in particular in the energy sector. The choice of the sector is not casual: ESG is the acronym for environmental, social, and governance, and energy companies are strictly related to the environmental theme. The methodology adopted leads to a comparison between a sample of ESG funds and a sample of ESG funds with similar characteristics, using the most important indicators of literature: yield, standard deviation, and Sharpe index. The analysis is focused on equity funds. Results that are partial, due to the lack of historicity, show a good performance of ESG funds, testifying how a sustainable approach does not necessarily mean lower profits. It is clear that these first findings do not involve an absolute preference for ESG funds in terms of performance because the persistence of results is requested. Furthermore, these findings are to be verified in other sectors and in bond funds.Keywords: mutual funds, ESG, performance, energy
Procedia PDF Downloads 1142862 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells
Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari
Abstract:
Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.Keywords: ultrasound, mechanical index, modeling, stem cell
Procedia PDF Downloads 3342861 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 2662860 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 1882859 Introducing a Practical Model for Instructional System Design Based on Determining of the knowledge Level of the Organization: Case Study of Isfahan Public Transportation Co.
Authors: Mojtaba Aghajari, Alireza Aghasi
Abstract:
The first challenge which the current research faced has been the identification or determination of the level of knowledge in Isfahan public transportation corporation, and the second challenge has been the recognition and choice of a proper approach for the instructional system design. Responding these two challenges will present an appropriate model of instructional system design. In order to respond the first challenge or question, Nonaka and Takeuchi KM model has been utilized due to its universality among the 26 models proposed so far. The statistical population of this research included 2200 people, among which 200 persons were chosen as the sample of the research by the use of Morgan’s method. The data gathering has been carried out by the means of a questionnaire based on Nonaka and Takeuchi KM model, analysis of which has been done by SPSS program. The output of this questionnaire, yielding the point of 1.96 (out of 5 points), revealed that the general condition of Isfahan public transportation corporation is weak concerning its being knowledge-centered. After placing this output on Jonassen’s continuum, it was revealed that the appropriate approach for instructional system design is the system (or behavioral) approach. Accordingly, different steps of the general model of ADDIE, which covers all of the ISO10015 standards, were adopted in the act of designing. Such process in Isfahan public transportation corporation was designed and divided into three main steps, including: instructional designing and planning, instructional course planning, determination of the evaluation and the effectiveness of the instructional courses.Keywords: instructional system design, system approach, knowledge management, employees
Procedia PDF Downloads 3262858 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups
Authors: Guray Arslan, Riza Secer Orkun Keskin
Abstract:
Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength
Procedia PDF Downloads 3312857 Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding
Authors: Kulwinder Singh Mann, Manmohan Singh Heer, Asha Rani
Abstract:
The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source.Keywords: buildup factor, clay bricks, fire bricks, nuclear wastage management, radiation protective double layered slabs
Procedia PDF Downloads 4072856 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication
Authors: Fuad M. Alkoot
Abstract:
We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation
Procedia PDF Downloads 2782855 Experimental Performance of Vertical Diffusion Stills Utilizing Folded Sheets for Water Desalination
Authors: M. Mortada, A. Seleem, M. El-Morsi, M. Younan
Abstract:
The present study introduces the folding technology to be utilized for the first time in vertical diffusion stills. This work represents a model of the distillation process by utilizing chevron pattern of folded structure. An experimental setup has been constructed, to investigate the performance of the folded sheets in the vertical effect diffusion still for a specific range of operating conditions. An experimental comparison between the folded type and the flat type sheets has been carried out. The folded pattern showed a higher performance and there is an increase in the condensate to feed ratio that ranges from 20-30 % through the operating hot plate temperature that ranges through 60-90°C. In addition, a parametric analysis of the system using Design of Experiments statistical technique, has been developed using the experimental results to determine the effect of operating conditions on the system's performance and the best operating conditions of the system has been evaluated.Keywords: chevron pattern, fold structure, solar distillation, vertical diffusion still
Procedia PDF Downloads 4622854 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 3842853 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: wind tunnel, low cost instrumentation, experimental testing, CFD simulation
Procedia PDF Downloads 1802852 In situ Biodegradation of Endosulfan, Imidacloprid, and Carbendazim Using Indigenous Bacterial Cultures of Agriculture Fields of Uttarakhand, India
Authors: Geeta Negi, Pankaj, Anjana Srivastava, Anita Sharma
Abstract:
In the present study, the presence of endosulfan, imidacloprid, carbendazim, in the soil /vegetables/cereals and water samples was observed in agriculture fields of Uttarakhand. In view of biodegradation of these pesticides, nine bacterial isolates were recovered from the soil samples of the fields which tolerated endosulfan, imidacloprid, carbendazim from 100 to 200 µg/ml. Three bacterial consortia used for in vitro bioremediation experiments were three bacterial isolates for carbendazim, imidacloprid and endosulfan, respectively. Maximum degradation (87 and 83%) of α and β endosulfan respectively was observed in soil slurry by consortium. Degradation of Imidacloprid and carbendazim under similar conditions was 88.4 and 77.5% respectively. FT-IR analysis of biodegraded samples of pesticides in liquid media showed stretching of various bonds. GC-MS of biodegraded endosulfan sample in soil slurry showed the presence of non-toxic intermediates. A pot trial with Bacterial treatments lowered down the uptake of pesticides in onion plants.Keywords: biodegradation, carbendazim, consortium, endosulfan
Procedia PDF Downloads 3742851 An Axiomatic Approach to Constructing an Applied Theory of Possibility
Authors: Oleksii Bychkov
Abstract:
The fundamental difference between randomness and vagueness is that the former requires statistical research. These issues were studied by Zadeh L, Dubois D., Prad A. The theory of possibility works with expert assessments, hypotheses, etc. gives an idea of the characteristics of the problem situation, the nature of the goals and real limitations. Possibility theory examines experiments that are not repeated. The article discusses issues related to the formalization of a fuzzy, uncertain idea of reality. The author proposes to expand the classical model of the theory of possibilities by introducing a measure of necessity. The proposed model of the theory of possibilities allows us to extend the measures of possibility and necessity onto a Boolean while preserving the properties of the measure. Thus, upper and lower estimates are obtained to describe the fact that the event will occur. Knowledge of the patterns that govern mass random, uncertain, fuzzy events allows us to predict how these events will proceed. The article proposed for publication quite fully reveals the essence of the construction and use of the theory of probability and the theory of possibility.Keywords: possibility, artificial, modeling, axiomatics, intellectual approach
Procedia PDF Downloads 33