Search results for: soil organic carbon stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8208

Search results for: soil organic carbon stock

6258 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids

Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi

Abstract:

The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.

Keywords: dianabol steroid, determination, modified GCE, urine

Procedia PDF Downloads 284
6257 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
6256 A Study on the Chemical Composition of Kolkheti's Sphagnum Peat Peloids to Evaluate the Perspective of Use in Medical Practice

Authors: Al. Tsertsvadze. L. Ebralidze, I. Matchutadze. D. Berashvili, A. Bakuridze

Abstract:

Peatlands are landscape elements, they are formed over a very long period by physical, chemical, biologic, and geologic processes. In the moderate zone of Caucasus, the Kolkheti lowlands are distinguished by the diversity of relictual plants, a high degree of endemism, orographic, climate, landscape, and other characteristics of high levels of biodiversity. The unique properties of the Kolkheti region lead to the formation of special, so-called, endemic peat peloids. The composition and properties of peloids strongly depend on peat-forming plants. Peat is considered a unique complex of raw materials, which can be used in different fields of the industry: agriculture, metallurgy, energy, biotechnology, chemical industry, health care. They are formed in permanent wetland areas. As a result of decay, higher plants remain in the anaerobic area, with the participation of microorganisms. Peat mass absorbs soil and groundwater. Peloids are predominantly rich with humic substances, which are characterized by high biological activity. Humic acids stimulate enzymatic activity, regenerative processes, and have anti-inflammatory activity. Objects of the research were Kolkheti peat peloids (Ispani, Anaklia, Churia, Chirukhi, Peranga) possessing different formation phases. Due to specific physical and chemical properties of research objects, the aim of the research was to develop analytical methods in order to study the chemical composition of the objects. The research was held using modern instrumental methods of analysis: Ultraviolet-visible spectroscopy and Infrared spectroscopy, Scanning Electron Microscopy, Centrifuge, dry oven, Ultraturax, pH meter, fluorescence spectrometer, Gas chromatography-mass spectrometry (GC-MS/MS), Gas chromatography. Based on the research ration between organic and inorganic substances, the spectrum of micro and macro elements, also the content of minerals was determined. The content of organic nitrogen was determined using the Kjeldahl method. The total composition of amino acids was studied by a spectrophotometric method using standard solutions of glutamic and aspartic acids. Fatty acid was determined using GC (Gas chromatography). Based on the obtained results, we can conclude that the method is valid to identify fatty acids in the research objects. The content of organic substances in the research objects was held using GC-MS. Using modern instrumental methods of analysis, the chemical composition of research objects was studied. Each research object is predominantly reached with a broad spectrum of organic (fatty acids, amino acids, carbocyclic and heterocyclic compounds, organic acids and their esters, steroids) and inorganic (micro and macro elements, minerals) substances. Modified methods used in the presented research may be utilized for the evaluation of cosmetological balneological and pharmaceutical means prepared on the base of Kolkheti's Sphagnum Peat Peloids.

Keywords: modern analytical methods, natural resources, peat, chemistry

Procedia PDF Downloads 127
6255 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 347
6254 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 231
6253 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads

Authors: Kavitha A.S., L.Govindaraju

Abstract:

Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.

Keywords: geogrid, geotextile, reinforced earth, sandwich technique

Procedia PDF Downloads 287
6252 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 120
6251 Small Scale Batch Anaerobic Digestion of Rice Straw

Authors: V. H. Nguyen, A. Castalone, C. Jamieson, M. Gummert

Abstract:

Rice straw is an abundant biomass resource in Asian countries that can be used for bioenergy. In continuously flooded rice fields, it can be removed without reducing the levels of soil organic matter. One suitable bioenergy technology is anaerobic digestion (AD), but it needs to be further verified using rice straw as a feedstock. For this study, a batch AD system was developed using rice straw and cow dung. It is low cost, farm scale, with the batch capacity ranging from 5 kg to 200 kg of straw mixed with 10% of cow dung. The net energy balance obtained was from 3000 to 4000 MJ per ton of straw input at 15-18% moisture content. Net output energy obtained from biogas and digestate ranged from 4000 to 5000 MJ per ton of straw. This indicates AD as a potential solution for converting rice straw from a waste to a clean fuel, reducing the environmental footprint caused by current disposal practices.

Keywords: rice straw, anaerobic digestion, biogas, bioenergy

Procedia PDF Downloads 352
6250 Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding

Authors: Mehdi Salari

Abstract:

This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min.

Keywords: martensite process, accumulative roll bonding, recrystallization, nanostructure, plain carbon steel

Procedia PDF Downloads 379
6249 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 167
6248 A Solution to Analyze the Geosynthetic Reinforced Piled Embankments Considering Pile-Soil Interaction

Authors: Feicheng Liu, Weiming Liao, Jianjing Zhang

Abstract:

A pile-supported embankment with geosynthetic-reinforced mat (PSGR embankment) has been considered as an effective solution to reduce the total and differential settlement of the embankment constructed over soft soil. In this paper, a new simplified method proposed firstly incorporates the load transfer between piles and surrounding soil and the settlement of pile, and also considers arching effect in embankment fill, membrane effect of geosynthetic reinforcement, and subsoil resistance, to evaluate the behavior of PSGR embankment. Subsoil settlement is assumed to consist of two parts:(1) the settlement of subsoil surface between piles equivalent to that of pile caps assuming the geosynthetic reinforcement without deformation yet; (2) the subsoil subsiding along with the geosynthetic deforming, and the deflected geosynthetic being considered as centenary. The force equilibrium, including loads acting on the upper surface of geosynthetic, subsoil resistance, as well as the stress-strain relationship of the geosynthetic reinforcement at the edge of pile cap, is established, thus the expression of subsoil resistance is deduced, and subsequently the tension of geosynthetic and stress concentration ratio between piles can be calculated. The proposed method is validated through observed data from three field tests and also compared with other eight analytical solutions available in the literature. In addition, a sensitive analysis is provided to demonstrate the influence of with/without considering pile-soil interaction for evaluating the performance of PSGR embankment.

Keywords: pile-supported embankment, geosynthetic, analytical solution, soil arching effect, the settlement of pile, sensitive analysis

Procedia PDF Downloads 157
6247 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 260
6246 Presence of High Concentrations of Toxic Metals from the Collected Soil Samples Due to Excessive E-Waste Burning in the Various Areas of Moradabad City, U.P India

Authors: Aprajita Singh, Anamika Tripathi, Surya P. Dwivedi

Abstract:

Moradabad is a small town in the Northern area of Uttar Pradesh, India. It is situated on the bank of river Ramganga which is also known as ‘Brass City of India’. There is eventually increase in the environmental pollution due to uncontrolled and inappropriate e-waste burning (recycling) activities which have been reported in many areas of Moradabad. In this paper, analysis of toxic heavy metals, causing pollution to the surrounding environment released from the e-waste burning and much other recycling process. All major e-waste burning sites are situated on the banks of the river which is burned in open environmental conditions. Soil samples were collected from seven (n=3) different sites including control site, after digestion of soil samples using triacid mixture, analysis of different toxic metals (Pb, Ar, Hg, Cd, Cr, Cu, Zn, Fe, and Ni) has been carried out with the help of instrument ICP-AAS. After the study, the outcome is that the soil of those areas contains a relatively high level of the toxic metals in order of Cu>Fe>Pb>Cd>Cr>Zn>Ar>Hg. The concentration of Cd, Pb, Cr, Ar and Zn (the majority of samples experimentally proved) exceeded the maximum standard level of WHO. Sequentially this study showed that uncontrolled e-waste processing operations caused serious pollution to local soil and release of toxic metals in the environment is also causing adverse effect on the health of people living in the nearby areas making them more prone to various harmful diseases.

Keywords: brass city, environment pollution, e-waste, toxic heavy metals

Procedia PDF Downloads 300
6245 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida

Authors: Kunwar D. Yadav, Dayanand Sharma

Abstract:

Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).

Keywords: cow dung, Eisenia foetida, textile sludge, vermicompost

Procedia PDF Downloads 214
6244 The Effectiveness of Prefabricated Vertical Drains for Accelerating Consolidation of Tunis Soft Soil

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

The purpose of the present work is to study the consolidation behavior of highly compressible Tunis soft soil “TSS” by means of prefabricated vertical drains (PVD’s) associated to preloading based on laboratory and field investigations. In the first hand, the field performance of PVD’s on the layer of Tunis soft soil was analysed based on the case study of the construction of embankments of “Radès la Goulette” bridge project. PVD’s Geosynthetics drains types were installed with triangular grid pattern until 10 m depth associated with step-by-step surcharge. The monitoring of the soil settlement during preloading stage for Radès La Goulette Bridge project was provided by an instrumentation composed by various type of tassometer installed in the soil. The distribution of water pressure was monitored through piezocone penetration. In the second hand, a laboratory reduced tests are performed on TSS subjected also to preloading and improved with PVD's Mebradrain 88 (Mb88) type. A specific test apparatus was designed and manufactured to study the consolidation. Two series of consolidation tests were performed on TSS specimens. The first series included consolidation tests for soil improved by one central drain. In thesecond series, a triangular mesh of three geodrains was used. The evolution of degree of consolidation and measured settlements versus time derived from laboratory tests and field data were presented and discussed. The obtained results have shown that PVD’s have considerably accelerated the consolidation of Tunis soft soil by shortening the drainage path. The model with mesh of three drains gives results more comparative to field one. A longer consolidation time is observed for the cell improved by a single central drain. A comparison with theoretical analysis, basically that of Barron (1948) and Carillo (1942), was presented. It’s found that these theories overestimate the degree of consolidation in the presence of PVD.

Keywords: tunis soft soil, prefabricated vertical drains, acceleration of consolidation, dissipation of excess pore water pressures, radès bridge project, barron and carillo’s theories

Procedia PDF Downloads 127
6243 Optimization of Organic Rankine Cycle System for Waste Heat Recovery from Excavator

Authors: Young Min Kim, Dong Gil Shin, Assmelash Assefa Negash

Abstract:

This study describes the application of a single loop organic Rankine cycle (ORC) for recovering waste heat from an excavator. In the case of waste heat recovery of the excavator, the heat of hydraulic oil can be used in the ORC system together with the other waste heat sources including the exhaust gas and engine coolant. The performances of four different cases of single loop ORC systems were studied at the main operating condition, and critical design factors are studied to get the maximum power output from the given waste heat sources. The energy and exergy analysis of the cycles are performed concerning the available heat source to determine the best fluid and system configuration. The analysis demonstrates that the ORC in the excavator increases 14% of the net power output at the main operating condition with a simpler system configuration at a lower expander inlet temperature than in a conventional vehicle engine without the heat of the hydraulic oil.

Keywords: engine, excavator, hydraulic oil, organic Rankine cycle (ORC), waste heat recovery

Procedia PDF Downloads 306
6242 Investors' Ratio Analysis and the Profitability of Listed Firms: Evidence from Nigeria

Authors: Abisola Akinola, Akinsulere Femi

Abstract:

The stock market has continually been a source of economic development in most developing countries. This study examined the relationship between investors’ ratio analysis and profitability of quoted companies in Nigeria using secondary data obtained from the annual reports of forty-two (42) companies. The study employed the multiple regression technique to analyze the relationship between investors’ ratio analysis (measured by dividend per share and earning per share) and profitability (measured by the return on equity). The results from the analysis show that investors’ ratio analysis, when measured by earnings per share, have a positive and significant impact on profitability. However, the study noted that investors’ ratio analysis, when measured by dividend per share, tend to have a positive impact on profitability but it is statistically insignificant. By implication, investors and other stakeholders that are interested in investing in stocks can predict the earning capacity of listed firms in the stock market.

Keywords: dividend per share, earnings per share, profitability, return on equity

Procedia PDF Downloads 137
6241 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 180
6240 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 273
6239 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 144
6238 Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins

Authors: O. Abramova, L. Abukova, A. Goreva, G. Isaeva

Abstract:

The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.

Keywords: hydrocarbons, ore genesis, paragenesis, pore water

Procedia PDF Downloads 259
6237 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region

Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin

Abstract:

Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.

Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand

Procedia PDF Downloads 156
6236 CSR: Corporate Social Responsibility Performance of Indian Automobiles Companies

Authors: Jagbir Singh Kadyan

Abstract:

This research paper critically analyse the performance of those Indian Automobile Companies which are listed and traded on the National Stock Exchange (NSE) of India and which are also included in the NSE nifty auto Index. In India, CSR–Corporate Social Responsibility is mandatory for certain qualifying companies under the Indian Companies Act 2013, which replaces the erstwhile Companies Act 1956. There has been a significant shift in the focus and approaches of the Indian Corporates towards their CSR obligations with the insertion of section 135, revision of section 198 and introduction of schedule VII of the Indian Companies Act 2013. Every such qualifying companies are required to mandatorily spend at least 2% of their annual average net profit of the immediately preceding three financial years on such CSR activities as specified under schedule VII of the Companies act 2013. This research paper analyzes the CSR performance of such Indian companies. This research work is originally based on the secondary data. The annual reports of the selected Indian automobile companies have been extensively used and considered for this research work.

Keywords: board of directors, corporate social responsibility, CSR committees, Indian automobile companies, Indian companies act 2013, national stock exchange

Procedia PDF Downloads 538
6235 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric

Authors: N. Najafi, Laleh Maleknia , M. E. Olya

Abstract:

An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.

Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings

Procedia PDF Downloads 422
6234 Volatile Organic Compounds (VOCS) Destruction by Catalytic Oxidation for Environmental Applications

Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina

Abstract:

Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ-Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.

Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts

Procedia PDF Downloads 544
6233 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon

Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum

Abstract:

The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.

Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis

Procedia PDF Downloads 124
6232 Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment

Authors: M. M. Tawfik, Ezzat M. Abd El Lateef, B. B. Mekki, Amany A. Bahr, Magda H. Mohamed, Gehan S. Bakhoom

Abstract:

The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment.

Keywords: agricultural waste, organic compost, environment, valuable resources

Procedia PDF Downloads 520
6231 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 389
6230 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.

Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy

Procedia PDF Downloads 310
6229 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 210