Search results for: production optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10213

Search results for: production optimization

8263 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 144
8262 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control

Procedia PDF Downloads 163
8261 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron

Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora

Abstract:

Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.

Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model

Procedia PDF Downloads 153
8260 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis

Authors: Hakimeh Masoudigavgani

Abstract:

Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.

Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)

Procedia PDF Downloads 581
8259 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae

Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi

Abstract:

This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.

Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper

Procedia PDF Downloads 367
8258 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods

Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen

Abstract:

Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.

Keywords: accommodation establishments, human resource management, multi-objective optimization on the basis of ratio analysis, multi-criteria decision making, step-wise weight assessment ratio analysis

Procedia PDF Downloads 343
8257 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda

Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere

Abstract:

The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.

Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems

Procedia PDF Downloads 61
8256 Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods

Authors: Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Ahmed M. Rabie

Abstract:

Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions.

Keywords: wireless mesh networks, genetic algorithms, simulated annealing, topology design

Procedia PDF Downloads 458
8255 The Effects of Varying Nutrient Conditions on Hydrogen Production in PGR5 Deficient C. Reinhardtii Mutants

Authors: Samuel Mejorado

Abstract:

C. Reinahrdtii serves as one of the most promising organisms from which to obtain biological hydrogen. However, its production catalyst, [FeFe]-hydrogenase, is largely inhibited by the presence of oxygen. In recent years, researchers have identified a Proton Gradient Regulation 5 (PGR5) deficient mutant, which shows enhanced respiration and lower accumulations of oxygen within the system. In this research, we investigated the effects of varying nutrient conditions on PGR5 mutants' ability to produce hydrogen. After growing PGR5 mutants in varying nutrient conditions under 55W fluorescent lamps at 30℃ with constant stirring at 200 rpm, a common water displacement method was utilized to obtain a definitive volumetric reading of hydrogen produced by these mutants over a period of 12 days. After the trials, statistical t-tests and ANOVAs were performed to better determine the effect which nutrient conditions have on PGR5 mutants' ability to produce hydrogen. In this, we report that conditions of sulfur deprivation most optimally enhanced hydrogen production within these mutants, with groups grown under these conditions demonstrating the highest production capacity over the entire 12-day period. Similarly, it was found that when grown under conditions of nitrogen deprivation, a favorable shift towards carbon fixation and overall lipid/starch metabolism was observed. Overall, these results demonstrate that PGR5-deficient mutants stand as a promising source of biohydrogen when grown under conditions of sulfur deprivation. To date, photochemical characteristics of [FeFe]-hydrogenase in these mutants have yet to be investigated under conditions of sulfur deprivation.

Keywords: biofuel, biohydrogen, [FeFe]-hydrogenase, algal biofuel

Procedia PDF Downloads 145
8254 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: dehydrogenation and hydrogenation, reaction coupling, design and control, process integration

Procedia PDF Downloads 340
8253 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 255
8252 Production of Nanocrystalline Cellulose (NCC) from Rice Husk Biomass by Chemical Extraction Process

Authors: Md. Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta

Abstract:

The objective of the study is to produce naocrystalline cellulose (NCC) from rice husk by chemical extraction process. The chemical extraction processes of this production are delignification, bleaching and hydrolysis. In order to produce NCC, raw rice husk (RRH) was grinded and converted to powder form. Powder rice husk was obtained by sieving and the particles in the 75-710 μm size range was used for experimental work. The production of NCC was conducted into the jacketed glass reactor at 80 ˚C temperature under predetermined experimental conditions. In this work NaOH (4M) solution was used for delignification process. After certain experimental time delignified powder RH was collected from the reactor then washed, bleached and finally hydrolyzed in order to degrade cellulose to nanocrystalline cellulose (NCC). For bleaching and hydrolysis processes NaOCl (20%) and H2SO4 (4M) solutions were used, respectively. The resultant products from hydrolysis was neutralized by buffer solution and analyzed by FTIR, XRD, SEM, AFM and TEM. From the analysis, NCC has been identified successfully and the particle dimension has been confirmed to be in the range of 20-50 nm. From XRD results, the crystallinity of NCC was found to be approximately 45%.

Keywords: nanocrystalline cellulose, NCC, rice husk, biomass, chemical extraction

Procedia PDF Downloads 401
8251 From the “Movement Language” to Communication Language

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov

Abstract:

The origin of ‘Human Language’ is still a secret and the most interesting subject of historical linguistics. The core element is the nature of labeling or coding the things or processes with symbols and sounds. In this paper, we investigate human’s involuntary Paired Sounds and Shape Production (PSSP) and its contribution to the development of early human communication. Aimed at twenty-six volunteers who provided many physical movements with various difficulties, the research team investigated the natural, repeatable, and paired sounds and shape productions during human activities. The paper claims the involvement of Paired Sounds and Shape Production (PSSP) in the phonetic origin of some modern words and the existence of similarities between elements of PSSP with characters of the classic Latin alphabet. The results may be used not only as a supporting idea for existing theories but to create a closer look at some fundamental nature of the origin of the languages as well.

Keywords: body shape, body language, coding, Latin alphabet, merging method, movement language, movement sound, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 250
8250 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
8249 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 12
8248 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 140
8247 Place and Importance of Goats in the Milk Sector in Algeria

Authors: Tennah Safia, Azzag Naouelle, Derdour Salima, Hafsi Fella, Laouadi Mourad, Laamari Abdalouahab, Ghalmi Farida, Kafidi Nacerredine

Abstract:

Currently, goat farming is widely practiced among the rural population of Algeria. Although milk yield of goats is low (110 liters per goat and per year on average), this milk partly ensures the feeding of small children and provides raw milk, curd, and fermented milk to the whole family. In addition, given its investment cost, which is ten times lower than that of a cow, this level of production is still of interest. This interest is reinforced by the qualities of goat's milk, highly sought after for its nutritional value superior to that of cow's milk. In the same way, its aptitude for the transformation, in particular in quality cheeses, is very sought after. The objective of this study is to give the situation of goat milk production in rural areas of Algeria and to establish a classification of goat breeds according to their production potential. For this, a survey was carried out with goat farmers in Algerian steppe. Three indigenous breeds were encountered in this study: the breed Arabia, Mozabite, and Mekatia; Arabia being the most dominant. The Mekatia breed and the Mozabite breed appear to have higher production and milking abilities than other local breeds. They are therefore indicated to play the role of local dairy breeds par excellence. The other breed that could be improved milk performance is the Arabia breed. There, however, the milk performance of this breed is low. However, in order to increase milk production, uncontrolled crosses with imported breeds (mainly Saanen and Alpine) were carried out. The third population that can be included in the category for dairy production is the dairy breed group of imported origin. There are farms in Algeria composed of Alpine and Saanen breeds born locally. Improved milk performance of local goats, Crusader population, and dairy breeds of imported origin could be done by selection. For this, it is necessary to set up a milk control to detect the best animals. This control could be carried out among interested farmers in each large goat breeding area. In conclusion, sustained efforts must be made to enable the sustainable development of the goat sector in Algeria. It will, therefore, be necessary to deepen the reflection on a national strategy to valorize goat's milk, taking into account the specificities of the environment, the genetic biodiversity, and the eating habits of the Algerian consumer.

Keywords: goat, milk, Algeria, biodiversity

Procedia PDF Downloads 185
8246 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm

Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim

Abstract:

Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.

Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization

Procedia PDF Downloads 83
8245 A Novel Approach towards Test Case Prioritization Technique

Authors: Kamna Solanki, Yudhvir Singh, Sandeep Dalal

Abstract:

Software testing is a time and cost intensive process. A scrutiny of the code and rigorous testing is required to identify and rectify the putative bugs. The process of bug identification and its consequent correction is continuous in nature and often some of the bugs are removed after the software has been launched in the market. This process of code validation of the altered software during the maintenance phase is termed as Regression testing. Regression testing ubiquitously considers resource constraints; therefore, the deduction of an appropriate set of test cases, from the ensemble of the entire gamut of test cases, is a critical issue for regression test planning. This paper presents a novel method for designing a suitable prioritization process to optimize fault detection rate and performance of regression test on predefined constraints. The proposed method for test case prioritization m-ACO alters the food source selection criteria of natural ants and is basically a modified version of Ant Colony Optimization (ACO). The proposed m-ACO approach has been coded in 'Perl' language and results are validated using three examples by computation of Average Percentage of Faults Detected (APFD) metric.

Keywords: regression testing, software testing, test case prioritization, test suite optimization

Procedia PDF Downloads 338
8244 A Method to Estimate Wheat Yield Using Landsat Data

Authors: Zama Mahmood

Abstract:

The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.

Keywords: landsat, NDVI, remote sensing, satellite images, yield

Procedia PDF Downloads 335
8243 A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity

Authors: Tamas Hartvanyi, Zoltan Andras Nagy, Miklos Szabo

Abstract:

The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application.

Keywords: warehouse, warehouse capacity, warehouse design method, warehouse optimization

Procedia PDF Downloads 141
8242 Characterization of an Isopropanol-Butanol Clostridium

Authors: Chen Zhang, Fengxue Xin, Jianzhong He

Abstract:

A unique Clostridium beijerinckii species strain BGS1 was obtained from grass land samples, which is capable of producing 8.43g/L butanol and 3.21 isopropanol from 60g/L glucose while generating 4.68g/L volatile fatty acids (VFAs) from 30g/L xylan. The concentration of isopropanol produced by culture BGS1 is ~15% higher than previously reported wild-type Clostridium beijerinckii under similar conditions. Compared to traditional Acetone-Butanol-Ethanol (ABE) fermentation species, culture BGS1 only generates negligible amount of ethanol and acetone, but produces butanol and isopropanol as biosolvent end-products which are pure alcohols and more economical than ABE. More importantly, culture BGS1 can consume acetone to produce isopropanol, e.g., 1.84g/L isopropanol from 0.81g/L acetone in 60g/L glucose medium containing 6.15g/L acetone. The analysis of BGS1 draft genome annotated by RAST server demonstrates that no ethanol production is caused by the lack of pyruvate decarboxylase gene – related to ethanol production. In addition, an alcohol dehydrogenase (adhe gene) was found in BGS1 which could be a potential gene responsible for isopropanol-generation. This is the first report on Isopropanol-Butanol (IB) fermentation by wild-type Clostridium strain and its application for isopropanol and butanol production.

Keywords: acetone conversion, butanol, clostridium, isopropanol

Procedia PDF Downloads 292
8241 Enhancement of Shelflife of Malta Fruit with Active Packaging

Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar

Abstract:

Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.

Keywords: Malta fruit, scavenger, packaging, shelf life

Procedia PDF Downloads 280
8240 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162
8239 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 507
8238 Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida

Authors: P. Pasomboon, P. Chumnanpuen, T. E-kobon

Abstract:

Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including Pasteurella multocida. This study aimed to modify a genome-scale metabolic model of Escherichia coli using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from P. multocida to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further.

Keywords: Pasteurella multocida, Escherichia coli, hyaluronic acid, genome-scale metabolic model, bioinformatics

Procedia PDF Downloads 123
8237 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
8236 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 225
8235 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 275
8234 Optimization of Oxygen Plant Parameters Simulating with MATLAB

Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki

Abstract:

Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.

Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB

Procedia PDF Downloads 322