Search results for: grinding techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6863

Search results for: grinding techniques

4913 Pattern in Splitting Sequence in Okike’s Merged Irregular Transposition Cipher for Encrypting Cyberspace Messages

Authors: Okike Benjamin, E. J. D. Garba

Abstract:

The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable to these threats. The researchers in this work propose a new encryption technique to be known as Merged Irregular Transposition Cipher. In this proposed encryption technique, a message to be encrypted will first of all be split into multiple parts depending on the length of the message. After the split, different keywords are chosen to encrypt different parts of the message. After encrypting all parts of the message, the positions of the encrypted message could be swapped to other position thereby making it very difficult to decrypt by any unauthorized user.

Keywords: information security, message splitting, pattern, sequence

Procedia PDF Downloads 286
4912 Ni-W alloy Coatings: A Promising Electrode Material

Authors: Mr. Liju Elias, A. Chitharanjan Hegde

Abstract:

Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed.

Keywords: electrocatalytic behavior, HER, Ni-W alloy, OER

Procedia PDF Downloads 413
4911 Exploring the Relationship among Job Stress, Travel Constraints, and Job Satisfaction of the Employees in Casino Hotels: The Case of Macau

Authors: Tao Zhang

Abstract:

Job stress appears nearly everywhere especially in the hospitality industry because employees in this industry usually have to work long time and try to meet conflicting demands of their customers, managers, and company. To reduce job stress, employees of casino hotels try to perform leisure activities or tourism. However, casino employees often meet many obstacles or constraints when they plan to travel. Until now, there is little understanding as to why casino hotel employees often face many travel constraints or leisure barriers. What is more, few studies explore the relationship between travel constraints and job stress of casino employees. Therefore, this study is to explore the construct of casino hotel employees' travel constraints and the relationship among job stress, travel constraints, and job satisfaction. Using convenient sampling method, this study planned to investigate 500 front line employees and managers of ten casino hotels in Macau. A total of 500 questionnaires were distributed, and 414 valid questionnaires were received. The return rate of valid questionnaires is 82.8%. Several statistical techniques such as factor analysis, t-test, one-way ANOVA, and regression analysis were applied to analyze the collected data. The findings of this study are as follows. Firstly, by using factor analysis, this study found the travel constraints of casino employees include intrapersonal constraints, interpersonal constraints, and structural constraints. Secondly, by using regression analysis, the study found travel constraints are positively related with job stress while negatively related with job satisfaction. This means reducing travel constraints may create a chance for casino employees to travel so that they could reduce job stress, therefore raise their job satisfaction. Thirdly, this research divided the research samples into three groups by the degree of job stress. The three groups are low satisfaction group, medium satisfaction group, and high satisfaction group. The means values of these groups were compared by t-test. Results showed that there are significant differences of the means values of interpersonal constraints between low satisfaction group and high satisfaction group. This suggests positive interpersonal relationship especially good family member relationship reduce not only job stress but also travel constraints of casino employees. Interestingly, results of t-test showed there is not a significant difference of the means values of structural constraints between low satisfaction group and high satisfaction group. This suggests structural constraints are outside variables which may be related with tourism destination marketing. Destination marketing organizations (DMO) need use all kinds of tools and techniques to promote their tourism destinations so as to reduce structural constraints of casino employees. This research is significant for both theoretical and practical fields. From the theoretical perspective, the study found the internal relationship between travel constraints, job stress, and job satisfaction and the different roles of three dimensions of travel constraints. From the practical perspective, the study provides useful methods to reduce travel constraints and job stress, therefore, raise job satisfaction of casino employees.

Keywords: hotel, job satisfaction, job stress, travel constraints

Procedia PDF Downloads 247
4910 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 198
4909 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control

Authors: A. Mansouri, F. Krim

Abstract:

This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.

Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation

Procedia PDF Downloads 377
4908 Comparison Between Two Techniques (Extended Source to Surface Distance & Field Alignment) Of Craniospinal Irradiation (CSI) In the Eclipse Treatment Planning System

Authors: Naima Jannat, Ariful Islam, Sharafat Hossain

Abstract:

Due to the involvement of the large target volume, Craniospinal Irradiation makes it challenging to achieve a uniform dose, and it requires different isocenters. This isocentric junction needs to shift after every five fractions to overcome the possibility of hot and cold spots. This study aims to evaluate the Planning Target Volume coverage & sparing Organ at Risk between two techniques and shows that the Field Alignment Technique does not need replanning and resetting. Planning method for Craniospinal Irradiation by Eclipse treatment planning system Field Alignment and Extended Source to Surface Distance technique was developed where 36 Gy in 20 Fraction at the rate of 1.8 Gy was prescribed. The patient was immobilized in the prone position. In the Field Alignment technique, the plan consists of half beam blocked parallel opposed cranium and a single posterior cervicospine field was developed by sharing the same isocenter, which obviates divergence matching. Further, a single field was created to treat the remaining lumbosacral spine. Matching between the inferior diverging edge of the cervicospine field and the superior diverging edge of a lumbosacral field, the field alignment option was used, which automatically matches the field edge divergence as per the field alignment rule in Eclipse Treatment Planning System where the couch was set to 2700. In the Extended Source to Surface Distance technique, two parallel opposed fields were created for the cranium, and a single posterior cervicospine field was created where the Source to Surface Distance was from 120-140 cm. Dose Volume Histograms were obtained for each organ contoured and for each technique used. In all, the patient’s maximum dose to Planning Target Volume is higher for the Extended Source to Surface Distance technique to Field Alignment technique. The dose to all surrounding structures was increased with the use of a single Extended Source to Surface Distance when compared to the Field Alignment technique. The average mean dose to Eye, Brain Steam, Kidney, Oesophagus, Heart, Liver, Lung, and Ovaries were respectively (58% & 60 %), (103% & 98%), (13% & 15%), (10% & 63%), (12% & 16%), (33% & 30%), (14% & 18%), (69% & 61%) for Field Alignment and Extended Source to Surface Distance technique. However, the clinical target volume at the spine junction site received a less homogeneous dose with the Field Alignment technique as compared to Extended Source to Surface Distance. We conclude that, although the use of a single field Extended Source to Surface Distance delivered a more homogenous, but its maximum dose is higher than the Field Alignment technique. Also, a huge advantage of the Field Alignment technique for Craniospinal Irradiation is that it doesn’t need replanning and resetting up of patients after every five fractions and 95% prescribed dose was received by more than 95% of the Planning Target Volume in all the plane with the acceptable hot spot.

Keywords: craniospinalirradiation, cranium, cervicospine, immobilize, lumbosacral spine

Procedia PDF Downloads 113
4907 The Evolution of Man through Cranial and Dental Remains: A Literature Review

Authors: Rishana Bilimoria

Abstract:

Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.

Keywords: cranio-facial, dental remains, evolution, hominids

Procedia PDF Downloads 164
4906 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 574
4905 Development of a Performance Measurement Model for Hospitals Using Multi-Criteria Decision Making (MCDM) Techniques: A Case Study of Three South Australian Major Public Hospitals

Authors: Mohammad Safaeipour, Yousef Amer

Abstract:

This study directs its focus on developing a conceptual model to offer a systematic and integrated method to weigh the related measures and evaluate a competence of hospitals and rank of the selected hospitals that involve and consider the stakeholders’ key performance indicators (KPI’s). The Analytical Hierarchy Process (AHP) approach will use to weigh the dimensions and related sub- components. The weights and performance scores will combine by using the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) and rank the selected hospitals. The results of this study provide interesting insight into the necessity of process improvement implementation in which hospital that received the lowest ranking score.

Keywords: performance measurement system, PMS, hospitals, AHP, TOPSIS

Procedia PDF Downloads 371
4904 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 563
4903 The Functions of the Student Voice and Student-Centred Teaching Practices in Classroom-Based Music Education

Authors: Sofia Douklia

Abstract:

The present context paper aims to present the important role of ‘student voice’ and the music teacher in the classroom, which contributes to more student-centered music education. The aim is to focus on the functions of the student voice through the music spectrum, which has been born in the music classroom, and the teacher’s methodologies and techniques used in the music classroom. The music curriculum, the principles of student-centered music education, and the role of students and teachers as music ambassadors have been considered the major music parameters of student voice. The student- voice is a worth-mentioning aspect of a student-centered education, and all teachers should consider and promote its existence in their classroom.

Keywords: student's voice, student-centered education, music ambassadors, music teachers

Procedia PDF Downloads 90
4902 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features

Authors: Yurii Bloshko, Oksana Olar

Abstract:

This paper presents the analysis of 6 different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.

Keywords: fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms

Procedia PDF Downloads 140
4901 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network

Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag

Abstract:

This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.

Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load

Procedia PDF Downloads 563
4900 Survey on Arabic Sentiment Analysis in Twitter

Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb

Abstract:

Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.

Keywords: big data, social networks, sentiment analysis, twitter

Procedia PDF Downloads 575
4899 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: direct power transfer, boost converter, zero-voltage transition, zero-current transition

Procedia PDF Downloads 818
4898 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 294
4897 Wedding Organizer Strategy in the Era Covid-19 Pandemic In Surabaya, Indonesia

Authors: Rifky Cahya Putra

Abstract:

At this time of corona makes some countries affected difficult. As a result, many traders or companies are difficult to work in this pandemic era. So human activities in some fields must implement a new lifestyle or known as new normal. The transition from the one activity to another certainly requires high adaptation. So that almost in all sectors experience the impact of this phase, on of which is the wedding organizer. This research aims to find out what strategies are used so that the company can run in this pandemic. Techniques in data collection in the form interview to the owner of the wedding organizer and his team. Data analysis qualitative descriptive use interactive model analysis consisting of three main things, namely data reduction, data presentaion, and conclusion. For the result of the interview, the conclusion is that there are three strategies consisting of social media, sponsorship, and promotion.

Keywords: strategy, wedding organizer, pandemic, indonesia

Procedia PDF Downloads 131
4896 AC Voltage Regulators Using Single Phase Matrix Converter

Authors: Nagaraju Jarugu, B. R. Narendra

Abstract:

This paper focused on boost rectification by Single Phase Matrix Converter with fewer numbers of switches. The conventional matrix converter consists of 4 bidirectional switches, i.e. 8 set of IGBT/MOSFET with anti-parallel diodes. In this proposed matrix converter, only six switches are used. The switch commutation arrangements are also carried out in this work. The SPMC topology has many advantages as a minimal passive device use. It is very flexible and it can be used as a lot of converters. The gate pulses to the switches are provided by the PWM techniques. The duty ratio of the switches based on Pulse Width Modulation (PWM) technique was used to produce the output waveform of the circuit, simply by turning ON and OFF the switches. The simulation results using MATLAB/Simulink were provided to validate the feasibility of this proposed method.

Keywords: single phase matrix converter, reduced switches, AC voltage regulators, boost rectifier operation

Procedia PDF Downloads 1185
4895 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes

Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger

Abstract:

Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.

Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene

Procedia PDF Downloads 478
4894 Mathematical Simulation of Performance Parameters of Pulse Detonation Engine

Authors: Subhash Chander, Tejinder Kumar Jindal

Abstract:

Due to its simplicity, Pulse detonation engine technology has recently emerged as a future aerospace propulsion technology. In this paper, we studied various parameters affecting the performance of Pulse detonation engine (PDE) like tube length for proper deflagration to detonation transition (DDT), tube diameter (combustion tube), tube length, Shelkin spiral, Cell size, Equivalence ratio of fuel used etc. We have discussed various techniques for reducing the length of pulse tube by using various DDT enhancing devices. The effect of length of the tube from 40 mm to 3000 mm and diameter from 10 mm to 100 mm has been analyzed. The fuel used is C2H2 and oxidizer is O2. The results are processed in MATLAB for drawing valid conclusions.

Keywords: pulse detonation engine (PDE), deflagration to detonation (DDT), Schelkin spiral, cell size (λ)

Procedia PDF Downloads 570
4893 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance

Procedia PDF Downloads 405
4892 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, imbalanced datasets, sampling algorithms, big data

Procedia PDF Downloads 323
4891 A Survey of Discrete Facility Location Problems

Authors: Z. Ulukan, E. Demircioğlu,

Abstract:

Facility location is a complex real-world problem which needs a strategic management decision. This paper provides a general review on studies, efforts and developments in Facility Location Problems which are classical optimization problems having a wide-spread applications in various areas such as transportation, distribution, production, supply chain decisions and telecommunication. Our goal is not to review all variants of different studies in FLPs or to describe very detailed computational techniques and solution approaches, but rather to provide a broad overview of major location problems that have been studied, indicating how they are formulated and what are proposed by researchers to tackle the problem. A brief, elucidative table based on a grouping according to “General Problem Type” and “Methods Proposed” used in the studies is also presented at the end of the work.

Keywords: discrete location problems, exact methods, heuristic algorithms, single source capacitated facility location problems

Procedia PDF Downloads 470
4890 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
4889 Identification of Flood Prone Areas in Adigrat Town Using Boolean Logic with GIS and Remote Sensing Technique

Authors: Fikre Belay Tekulu

Abstract:

The Adigrat town lies in the Tigray region of Ethiopia. This region is mountainous and experiences a semiarid type of climate. Most of the rainfall occurs in four months of the year, which are June to September. During this season, flood is a common natural disaster, especially in urban areas. In this paper, an attempt is made to identify flood-prone areas in Adigrat town using Boolean logic with GIS and remote sensing techniques. Three parameters were incorporated as land use type, elevation, and slope. Boolean logic was used as land use equal to buildup land, elevation less than 2430 m, and slope less than 5 degrees. As a result, 0.575 km² was identified severely affected by floods during the rainy season.

Keywords: flood, GIS, hydrology, Adigrat

Procedia PDF Downloads 139
4888 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 83
4887 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: hard magnet, Sr-ferrite, sol-gel auto-combustion, nano-powder

Procedia PDF Downloads 363
4886 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models

Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev

Abstract:

Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.

Keywords: NLP, benchmak, bert, vectorization

Procedia PDF Downloads 52
4885 Application of Unmanned Aerial Vehicle in Geohazard Mapping: Case Study Dominica

Authors: Michael Mickson

Abstract:

The recent development of unmanned aerial vehicles (UAVs) has been increasing the number of technical solutions that can be used to identify, map, and manage the effects of geohazards. UAVs are generally cheaper and more versatile than traditional remote-sensing techniques, and they can be therefore considered as a good alternative for the acquisition of imagery and other remote sensing data before, during and after a natural hazard event. This study aims to use UAV for investigating areas susceptible to high mobility flows such as debris flow in Dominica, especially after the 2017 Hurricane Maria. The use of UAVs in identifying, mapping and managing of natural hazards helps to mitigate the negative effects of natural hazards on livelihood, properties and the built environment.

Keywords: unmanned aerial vehicle (UAV), geohazards, remote sensing, mapping, Dominica

Procedia PDF Downloads 128
4884 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 94