Search results for: fenugreek seed extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2710

Search results for: fenugreek seed extract

760 The Effect of Supercritical Fluid on the Extraction Efficiency of Heavy Metal from Soil

Authors: Haifa El-Sadi, Maria Elektorowicz, Reed Rushing, Ammar Badawieh, Asif Chaudry

Abstract:

Clay soils have particular properties that affect the assessment and remediation of contaminated sites. In clay soils, electro-kinetic transport of heavy metals has been carried out. The transport of these metals is predicated on maintaining a low pH throughout the cell, which, in turn, keeps the metals in the pore water phase where they are accessible to electro-kinetic transport. Supercritical fluid extraction and acid digestion were used for the analysis of heavy metals concentrations after the completion of electro-kinetic experimentation. Supercritical fluid (carbon dioxide) extraction is a new technique used to extract the heavy metal (lead, nickel, calcium and potassium) from clayey soil. The comparison between supercritical extraction and acid digestion of different metals was carried out. Supercritical fluid extraction, using ethylenediaminetetraacetic acid (EDTA) as a modifier, proved to be efficient and a safer technique than acid digestion technique in extracting metals from clayey soil. Mixing time of soil with EDTA before extracting heavy metals from clayey soil was investigated. The optimum and most practical shaking time for the extraction of lead, nickel, calcium and potassium was two hours.

Keywords: clay soil, heavy metals, supercritical fluid extraction, acid digestion

Procedia PDF Downloads 469
759 Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique

Authors: Soufiene Ilahi

Abstract:

Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 65
758 Growth and Morphological Characterization in Two Accessions of Sesame Plant

Authors: Ahmed Ibrahim Galadima, Abdullahi Muhammed Bello, Abdullateef Akintunde Raji, Ruqayyah Mujahidah Abdullateef, Hajara Sani Labaran

Abstract:

Sesamum indicium is an erect, herbaceous, branched, and warm-season annual crop. It differs in growth habit, form and shape, seed size and color, composition, size, and color of flowers. The experiments were performed by collecting two accessions of Sesamum indicum (white and black varieties). The morphological parameters like plant height and leaf size were measured using a ruler, while stem girth was observed using a vernier caliper. Germinability assessments were conducted by placing 100 seeds from each of the two sesame varieties and presoaked in 5 per cent sodium hypochlorite for 15 min., followed by rinse with distilled water. Germinability was assessed by placing the seeds in moist conditions and analyzing the outcome accordingly. The results from the experiments showed that the plant height (41.98 cm), stem girth (3.23 cm), and size of leaves (13.89 cm2) were higher in the white sesame variety when compared to the sesame black variety where 34.30 cm, 2.68 cm, and 7.47 cm2, respectively were obtained. But, from the black sesame variety, the number of leaves and the number of branches high values (105.06 cm) and (10.41), respectively were discovered. And significant differences were recorded in all the analyzed morphological parameters between the two sesame accessions, except stem girth. More so, the white variety of the sesame plant has demonstrated a good reproductive capability with the number of flowers (7.18), number of capsules (17.44), 100 seeds weight (1.67 g), and 1000 seeds weight (16.67 g). However, none of the analyzed reproductive parameters was observed from the black sesame variety. The white sesame variety was observed to have a higher number of Trichomes per microscopic view by almost 7 folds when compared to the black variety. But, improved size of stomata was detected in the black sesame variety by over 1.5 folds compared to the white variety. The germinability analysis had shown that from the sesame white variety, 98 seeds out of the 100 seeds sown were able to germinate, which signifies 98 percent germinability. Whereas 86 seeds out of the 100 seeds sown have germinated in petri dishes from the black sesame variety, which suggests 86 per cent germinability. Therefore, this research obviously showed that the white sesame variety displayed remarkable morphological qualities and, accordingly could be employed for farming purposes.

Keywords: accessions of sesame plant, characterization, growth, morphology

Procedia PDF Downloads 8
757 Building a Dynamic News Category Network for News Sources Recommendations

Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee

Abstract:

It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.

Keywords: news category, category network, news sources, ranking

Procedia PDF Downloads 386
756 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
755 Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep's Breeds

Authors: A. Ameur Ameur, F. Chougrani, M. Halbouche

Abstract:

In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn.

Keywords: Hamra, Ouled Djellal, protein polymorphism, sheep breeds

Procedia PDF Downloads 558
754 Smart Food Packaging Using Natural Dye and Nanoclay as a Meat Freshness Indicator

Authors: Betina Luiza Koop, Lenilton Santos Soares, Karina Cesca, Germán Ayala Valencia, Alcilene Rodrigues Monteiro

Abstract:

Active and smart food packaging has been studied to control and extend the food shelf-life. However, active compounds such as anthocyanins (ACNs) are unstable to high temperature, light, and pH changes. Several alternatives to stabilize and protect the anthocyanins have been researched, such as adsorption on nanoclays. Thus, this work aimed to stabilize anthocyanin extracted from jambolan fruit (Syzygium cumini), a noncommercial fruit, to development of food package sensors. The anthocyanin extract from jambolan pulp was concentrated by ultrafiltration and adsorbed on montmorillonite. The final biohybrid material was characterized by pH and color. Anthocyanins were adsorbed on nanoclay at pH 1.5, 2.5, and 3.5 and temperatures of 10 and 20 °C. The highest adsorption values were obtained at low pH at high temperatures. The color and antioxidant activity of the biohybrid was maintained for 60 days. A test of the color stability at pH from 1 to 13, simulating spoiled food using ammonia vapor, was performed. At pH from 1 to 5, the ACNs pink color was maintained, indicating that the flavylium cation form was preserved. At pH 13, the biohybrid presented yellow color due to the ACN oxidation. These results showed that the biohybrid material developed has potential application as a sensor to indicate the freshness of meat products.

Keywords: anthocyanin, biohybrid, food, smart packaging

Procedia PDF Downloads 73
753 Collective Intelligence-Based Early Warning Management for Agriculture

Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin

Abstract:

The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.

Keywords: agricultural engineering, warning systems, social network services, context awareness

Procedia PDF Downloads 384
752 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 499
751 Hair Regrowth Effect of Herbal Formula on Androgenic Alopecia Rat Model

Authors: Jian-You Wang, Feng Yi Hsu, Chieh-Hsi Wu

Abstract:

Androgenetic alopecia (AGA) is an androgen-dependent disorder caused by excess testosterone in blood capillaries or excess enzyme activity of 5α- reductase in hair follicles. Plants, alone or in combination, have been widely used for hair growth promotion since ancient times in Asia. In this study, the efficacy of a traditional Chinese herbal formula, Shen-Ying-Yang-Zhen-Dan (SYYZD) with different kinds of extract solvents, facilitating hair regrowth in testosterone-induced hair loss have been determined. The study was performed by treating with either 95 % ethanol aqueous extracts, 50% ethanol aqueous extracts or deionized water extracts orally in four-week-old male S.D. rats that experienced hair regrowth interruption induced by testosterone treatment. The 50% ethanol aqueous extracts group showed better hair regrowth promotion activities than either 95% ethanol aqueous extracts or deionized water extracts groups in 14 days treatment. In conclusion, our results suggest that 50% ethanol aqueous SYYZD extracts have hair growth promoting potential and may be beneficial as an alternative medicine for androgenetic alopecia treatment.

Keywords: Shen-Ying-Yang-Zhen-Dan, androgenic alopecia, hair loss, hair growth promotion, hair regrowth effect

Procedia PDF Downloads 778
750 Toxic Heavy Metal Accumulation by Algerian Malva sylvestris L. Depending on Location Variation

Authors: Souhila Terfi, Fatma Hassaine-Sadi

Abstract:

In the present study, wet digestion with HCl and HNO3 mixture was used to extract the heavy metals (copper (Cu), chromium (Cr), zinc (Zn), lead (Pb) and cadmium (Cd)) from the leaves, the stems and the roots of Malva sylvestris L., which were subsequently analyzed by AAS. The samples (soil and parts of species) were collected from different sites: the industrial area (IA) (Rouiba), the rubbish dump area (RDA) (Boudouaou), the residential area (RA) with large open fields and construction activities (Blida), the Montaigne area (MA) (Chrea) and the high plateau area (HPA) (Berouaguia). The study showed differences in metal concentrations according to the analysed parts and the different sampling locations. In the contaminated site of the industrial area (IA), high content of the toxic heavy metals (Cd: 3.18 µg/g DW and Pb: 34.48 µg/g DW) were found in the leaves of Malva sylvestris L. This finding suggests that the consumers of this species could be exposed to a risk associated with this higher level of these toxic metals. It was found that Malva sylvestris L. is rich by Zn and Cu in some sites, which are considered to be the essential elements for the human health. The obtained results with the control site (Montaigne area) suggest that this species can be applicable in both the health and food, feasible alternatives as medicinal plant without any risk.

Keywords: Malva sylvestris L., toxic heavy metal, medicinal plant, impact on human health

Procedia PDF Downloads 362
749 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 126
748 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump

Authors: Merieleen Engtipi

Abstract:

India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.

Keywords: energy demand, energy cooperation, fossil fuels, technology transfer

Procedia PDF Downloads 252
747 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks

Procedia PDF Downloads 295
746 Soil Compaction by a Forwarder in Timber Harvesting

Authors: Juang R. Matangaran, Erianto I. Putra, Iis Diatin, Muhammad Mujahid, Qi Adlan

Abstract:

Industrial plantation forest is the producer of logs in Indonesia. Several companies of industrial plantation forest have been successfully planted with fast-growing species, and it entered their annual harvesting period. Heavy machines such as forwarders are used in timber harvesting to extract logs from stump to landing site. The negative impact of using such machines are loss of topsoil and soil compaction. Compacted soil is considered unfavorable for plant growth. The research objectives were to analyze the soil bulk density, rut, and cone index of the soil caused by a forwarder passes, to analyze the relation between several times of forwarder passes to the increase of soil bulk density. A Valmet forwarder was used in this research. Soil bulk density at soil surface and cone index from the soil surface to the 50 cm depth of soil were measured at the harvested area. The result showed that soil bulk density increase with the increase of the Valmet forwarder passes. Maximum soil bulk density occurred after 5 times forwarder Valmet passed. The cone index tended to increase from the surface until 50 cm depth of soil. Rut formed and high soil bulk density indicated the soil compaction occurred by the forwarder operation.

Keywords: bulk density, forwarder Valmet, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 146
745 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 213
744 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 406
743 Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes

Authors: Avijit Dey, Shyam S. Paul, Satbir S. Dahiya, Balbir S. Punia, Luciano A. Gonzalez

Abstract:

Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration.

Keywords: buffalo, methanogenesis, rumen fermentation, vegetable oils

Procedia PDF Downloads 407
742 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 349
741 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: M. Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: open channel flow, smooth and rough bed, Reynolds number, turbulence

Procedia PDF Downloads 340
740 Reducing the Incidence Rate of Pressure Sore in a Medical Center in Taiwan

Authors: Chang Yu Chuan

Abstract:

Background and Aim: Pressure sore is not only the consequence of any gradual damage of the skin leading to tissue defects but also an important indicator of clinical care. If hospitalized patients develop pressure sores without proper care, it would result in delayed healing, wound infection, increase patient physical pain, prolonged hospital stay and even death, which would have a negative impact on the quality of care and also increase nursing manpower and medical costs. This project is aimed at decreasing the incidence of pressure sore in one ward of internal medicine. Our data showed 53 cases (0.61%) of pressure sore in 2015, which exceeded the average (0.5%) of Taiwan Clinical Performance Indicator (TCPI) for medical centers. The purpose of this project is to reduce the incidence rate of pressure sore in the ward. After data collection and analysis from January to December 2016, the reasons of developing pressure sore were found: 1. Lack of knowledge to prevent pressure among nursing staffs; 2. No relevant courses about preventing pressure ulcers and pressure wound care being held in this unit; 3. Low complete rate of pressure sore care education that family members should receive from nursing staffs; 4. Decompression equipment is not enough; 5. Lack of standard procedures for body-turning and positioning care. After team members brainstorming, several strategies were proposed, including holding in-service education, pressure sore care seed training, purchasing decompression mattress and memory pillows, designing more elements of health education tools, such as health education pamphlet, posters and multimedia films of body-turning and positioning demonstration, formulation and promotion of standard operating procedures. In this way, nursing staffs can understand the body-turning and positioning guidelines for pressure sore prevention and enhance the quality of care. After the implementation of this project, the pressure sore density significantly decreased from 0.61%(53 cases) to 0.45%(28 cases) in this ward. The project shows good results and good example for nurses working at the ward and helps to enhance quality of care.

Keywords: body-turning and positioning, incidence density, nursing, pressure sore

Procedia PDF Downloads 267
739 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method

Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa

Abstract:

Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.

Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al

Procedia PDF Downloads 335
738 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 79
737 Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action

Authors: S. Barbaqadze, M. Goderdzishvili, E. Mosidze, L. Lomtadze, V. Mshvildadze, L. Bakuridze, D. Berashvili, A. Bakuridze

Abstract:

This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.

Keywords: clary, essential oils, monarda, phytobiotics, poultry, thyme

Procedia PDF Downloads 160
736 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films

Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji

Abstract:

Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.

Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction

Procedia PDF Downloads 462
735 Comparative Effects of Homoplastic and Synthetic Pituitary Extracts on Induced Breeding of Heterobranchus longifilis (Valenciennes, 1840) in Indoor Hatchery Tanks in Owerri South East Nigeria

Authors: I. R. Keke, C. S. Nwigwe, O. S. Nwanjo, A. S. Egeruoh

Abstract:

An experiment was carried out at Urban Farm and Fisheries Nigeria Ltd, Owerri Imo State South East Nigeria between February and June 2014 to induce Brood stock of Heterobranchus longifilis (mean wt 1.3kg) in concrete tanks (1.0 x 2.0 x 1.5m) in dimension using a synthetic hormone (Ovaprim) and pituitary extract from Heterobranchus longifilis. Brood stock males were selected as pituitary donors and their weights matched those of females to be injected at 1ml/kg body weight of Fish. Ovaprim, was injected at 0.5ml/kg body weight of female fish. A latency period of 12 hours was allowed after injection of the Brood stock females before stripping the egg and incubation at 23 °C. While incubating the eggs, samples were drawn and the rate of fertilization was determined. Hatching occurred within 33 hours and hatchability rate (%) was determined by counting the active hatchings. The result showed that Ovaprim injected Brood stock eggs fertilized up to 80% while the pituitary from the Heterobranchus longifilis had low fertilization and hatching success 20%. Ovaprim is imported and costly, so more effort is required to enhance the procedures for homoplastic hypophysation.

Keywords: heterobranchus longifilis, ovaprim, hypophysation, latency period, pituitary

Procedia PDF Downloads 216
734 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs

Authors: Sadia Munir

Abstract:

Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.

Keywords: activin, biomarkers, growth factors, miroRNA

Procedia PDF Downloads 442
733 Technical and Pedagogical Considerations in Producing Screen Recorded Videos

Authors: M. Nikafrooz, J. Darsareh

Abstract:

Due to the COVID-19 pandemic, its impacts on education all over the world and the problems arising from the use of traditional methods in education, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording and giving educational services in virtual classes became popular among many teachers. But the production of screen recorded videos involves special technical and educational considerations so that educators could be able to produce valuable and well-made videos by taking those considerations into account. The purpose of this study was to extract and find the technical and educational considerations of producing screen recorded videos to provide a useful and comprehensive guideline for e-content producers to enable them to produce high-quality educational videos. This study is fundamental research and data collection has been done using the Delphi method. In this research, an attempt has been made to provide the necessary criteria and considerations regarding the design and production of screen recorded videos by studying the literatures, identifying and analyzing learners' and teachers' needs and expectations, reviewing the previously produced videos. The results of these studies led to the finding and extracting 129 indicators in the form of 6 criteria. Such considerations are expected to reduce production and editing time, increase the technical and educational quality, and finally facilitating and enhancing the processes of teaching and learning.

Keywords: e-content, screen recorded videos, screen recording software, technical and pedagogical considerations

Procedia PDF Downloads 106
732 Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation

Authors: Farnaz Sadeghi, Moslem Tavakol

Abstract:

In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing.

Keywords: poly vinyl alcohol, tannic acid, electron beam irradiation, hydrogel wound dressing

Procedia PDF Downloads 155
731 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 99