Search results for: atmospheric transport modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6069

Search results for: atmospheric transport modeling

4119 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model

Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann

Abstract:

This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.

Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow

Procedia PDF Downloads 319
4118 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 21
4117 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)

Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine

Abstract:

In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.

Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities

Procedia PDF Downloads 80
4116 Ownership and Shareholder Schemes Effects on Airport Corporate Strategy in Europe

Authors: Dimitrios Dimitriou, Maria Sartzetaki

Abstract:

In the early days of the of civil aviation, airports are totally state-owned companies under the control of national authorities or regional governmental bodies. From that time the picture has totally changed and airports privatisation and airport business commercialisation are key success factors to stimulate air transport demand, generate revenues and attract investors, linked to reliable and resilience of air transport system. Nowadays, airport's corporate strategy deals with policies and actions, affecting essential the business plans, the financial targets and the economic footprint in a regional economy they serving. Therefore, exploring airport corporate strategy is essential to support the decision in business planning, management efficiency, sustainable development and investment attractiveness on one hand; and define policies towards traffic development, revenues generation, capacity expansion, cost efficiency and corporate social responsibility. This paper explores key outputs in airport corporate strategy for different ownership schemes. The airport corporations are grouped in three major schemes: (a) Public, in which the public airport operator acts as part of the government administration or as a corporised public operator; (b) Mixed scheme, in which the majority of the shares and the corporate strategy is driven by the private or the public sector; and (c) Private, in which the airport strategy is driven by the key aspects of globalisation and liberalisation of the aviation sector. By a systemic approach, the key drivers in corporate strategy for modern airport business structures are defined. Key objectives are to define the key strategic opportunities and challenges and assess the corporate goals and risks towards sustainable business development for each scheme. The analysis based on an extensive cross-sectional dataset for a sample of busy European airports providing results on corporate strategy key priorities, risks and business models. The conventional wisdom is to highlight key messages to authorities, institutes and professionals on airport corporate strategy trends and directions.

Keywords: airport corporate strategy, airport ownership, airports business models, corporate risks

Procedia PDF Downloads 295
4115 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 312
4114 Rice Mycotoxins Fate During In vitro Digestion and Intestinal Absorption: the Effect of Individual and Combination Exposures

Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha

Abstract:

About half of the world's population eats rice daily, making it the primary food source for billions of people. Besides its nutrition potential, rice can be a significant route of exposure to many contaminants. Mycotoxins are an example of such contaminants that can be present in rice. Among them, ochratoxin (OTA), citrinin (CIT), and zearalenone (ZEN) are frequently reported in rice. During digestion, only a fraction of mycotoxins from food can be absorbed (bioaccessible fraction), influencing their ability to cause toxic effects. Insufficient knowledge of the bioavailability of mycotoxins, alone and in combination, may hinder an accurate risk assessment of contaminants ingested by humans. In this context, two different rice (Oryza sativa) varieties, Carolino white and Carolino brown, both with and without turmeric, were boiled and individually spiked with OTA, CIT, and ZEN plus with its combination. Subsequently, samples were submitted to the INFOGEST harmonized in vitro digestion protocol to evaluate the bioaccessibility of mycotoxins. Afterward, the in vitro intestinal transport of the mycotoxins, both alone and in combination, was evaluated in digests of Carolino white rice with and without turmeric. Assays were performed with a monolayers of of Caco-2 and HT-29 cells. Bioaccessibility of OTA and ZEN, alone and in combination, were similar in Carolino white and brown rice with or without turmeric. For CIT, when Carolino white rice was used, the bioaccessibility was higher alone than in combination (62.00% vs. 25.00%, without turmeric; 87.56% vs. 53.87%, with turmeric); however, with Carolino brown rice was the opposite (66.38% vs. 75.20%, without turmeric; 43.89% vs. 59.44%, with turmeric). All the mycotoxins, isolated, reached the higher bioaccessibility in the Carolino white rice with turmeric (CIT: 87.56%; OTA: 59.24%; ZEN: 58.05%). When mycotoxins are co-present, the higher bioaccessibility of each one varies with the type of rice. In general, when turmeric is present, bioaccessibility increases, except for CIT, using Carolino brown rice. Concerning the intestinal absorption in vitro, after 3 hours of transport, all mycotoxins were detected in the basolateral compartment being thus transported through the cells monolayer. ZEN presented the highest fraction absorbed isolated and combined, followed by CIT and OTA. These findings highlight that the presence of other components in the complex dietary matrix, like turmeric, and the co-presence of mycotoxins can affect its final bioavailability with obvious implications for health risk. This work provides new insights to qualitatively and quantitatively describe mycotoxin in rice fate during human digestion and intestinal absorption and further contribute to better risk assessment.

Keywords: bioaccessibility, digestion, intestinal absorption, mycotoxins

Procedia PDF Downloads 51
4113 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 63
4112 Structural Analysis of Multi-Pressure Integrated Vessel for Sport-Multi-Artificial Environment System

Authors: Joon-Ho Lee, Jeong-Hwan Yoon, Jung-Hwan Yoon, Sangmo Kang, Su-Yeon Hong, Hyun-Woo Jeong, Jaeick Chae

Abstract:

There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sports multi-environment simultaneously. In this study, we design a multi-pressure (positive/atmospheric/negative pressure) integrated vessel that can be used for the sport-multi-artificial environment system. We presented additional vessel designs with enlarged space for the tall users; with reinforcement pads added to reduce the maximum stress in the joints of its shells, and then carried out numerical analysis for the structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell, and the entrance, the safety of the structure was checked with the allowable stress of its material.

Keywords: structural analysis, multi-pressure, integrated vessel, sport-multi-artificial environment

Procedia PDF Downloads 520
4111 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions

Authors: Debasis Sengupta, Sudipta Das

Abstract:

The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.

Keywords: DMRL, IMRL, reliability bounds, hazard functions

Procedia PDF Downloads 389
4110 Enhancing Greenhouse Productivity and Energy Efficiency Through UV-IR Reflective Coatings and Dust Mitigation: A Case Study in Saudi Arabia

Authors: Tayirjan Taylor Isimjan, Essam Jamea, Muien Qaryouti

Abstract:

The demand for efficient greenhouse production is escalating, necessitating continuous improvements in controlled plant growth environments. Central to maximizing growth are critical light-related factors, including quantity, quality, and geometric distribution of intercepted radiation. This becomes particularly crucial in regions like the Middle East, characterized by high solar radiation and dusty atmospheric conditions. Existing greenhouse technologies often rely on additional expensive equipment to manage light conditions effectively. In this study, we propose a distinct approach employing functional coatings to mitigate dust and block UV and IR radiation, thereby conserving energy and enhancing productivity. By combining UV-IR reflective coatings with dust mitigation strategies, we aim to address both environmental challenges and energy consumption issues faced by greenhouse agriculture in Saudi Arabia.

Keywords: greenhouse, UV-IR reflective coatings, dust mitigation, energy efficiency, productivity

Procedia PDF Downloads 47
4109 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 122
4108 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting

Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero

Abstract:

In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.

Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling

Procedia PDF Downloads 125
4107 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 225
4106 Trajectories of Depression Anxiety and Stress among Breast Cancer Patients: Assessment at First Year of Diagnosis

Authors: Jyoti Srivastava, Sandhya S. Kaushik, Mallika Tewari, Hari S. Shukla

Abstract:

Little information is available about the development of psychological well being over time among women who have been undergoing treatment for breast cancer. The aim of this study was to identify the trajectories of depression anxiety and stress among women with early-stage breast cancer. Of the 48 Indian women with newly diagnosed early-stage breast cancer recruited from surgical oncology unit, 39 completed an interview and were assessed for depression anxiety and stress (Depression Anxiety Stress Scale-DASS 21) before their first course of chemotherapy (baseline) and follow up interviews at 3, 6 and 9 months thereafter. Growth mixture modeling was used to identify distinct trajectories of Depression Anxiety and Stress symptoms. Logistic Regression analysis was used to evaluate the characteristics of women in distinct groups. Most women showed mild to moderate level of depression and anxiety (68%) while normal to mild level of stress (71%). But one in 11 women was chronically anxious (9%) and depressed (9%). Young age, having a partner, shorter education and receiving chemotherapy but not radiotherapy might characterize women whose psychological symptoms remain strong nine months after diagnosis. By looking beyond the mean, it was found that several socio-demographic and treatment factors characterized the women whose depression, anxiety and stress level remained severe even nine months after diagnosis. The results suggest that support provided to cancer patients should have a special focus on a relatively small group of patient most in need.

Keywords: psychological well being, growth mixture modeling, logistic regression analysis, socio-demographic factors

Procedia PDF Downloads 137
4105 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications

Authors: Avinoam Rabinovich

Abstract:

CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.

Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow

Procedia PDF Downloads 59
4104 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 101
4103 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 101
4102 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh

Authors: Vivek Ganesh

Abstract:

Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.

Keywords: inundation map, NDVI map, storm tide map, track map

Procedia PDF Downloads 254
4101 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis

Authors: Vinod Nair, C. Sadasivan

Abstract:

Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.

Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling

Procedia PDF Downloads 239
4100 Modeling Pronunciations of Arab Broca’s Aphasics Using Mosstalk Words Technique

Authors: Sadeq Al Yaari, Fayza Alhammadi, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Saleh Al Yami

Abstract:

Background: There has been a debate in the literature over the years as to whether or not MossTalk Words program fits Arab Broca’s aphasics (BAs) due to that language differences and also the fact that the technique has not yet been used for aphasics with semantic dementia (SD aphasics). Aims: To oversimplify the above mentioned debate slightly for purposes of exposition, the purpose of the present study is to investigate the “usability” of this program as well as pictures and community as therapeutic techniques for both Arab BAs and SD aphasics. Method: The subjects of this study are two Saudi aphasics (53 and 57 years old, respectively). The former suffers from Broca’s aphasia due to a stroke, while the latter suffers from semantic dementia. Both aphasics can speak English and have used the Moss Talk Words program in addition to intensive picture-naming therapeutic sessions for two years. They were tested by one of the researchers four times (a time per six months). The families of the two subjects, in addition to their relatives and friends, played a major part in all therapeutic sessions. Conclusion: Results show that in averages across the entire therapeutic sessions, MossTalk Words program was clearly found more effective in modeling BAs’ pronunciation than that of SD aphasic. Furthermore, picture-naming intensive exercises in addition to the positive role of the community members played a major role in the progress of the two subjects’ performance.

Keywords: moss talk words, program, technique, Broca’s aphasia, semantic dementia, subjects, picture, community

Procedia PDF Downloads 32
4099 An Integrated Approach to Solid Waste Management of Karachi, Pakistan (Waste-to-Energy Options)

Authors: Engineer Dilnawaz Shah

Abstract:

Solid Waste Management (SWM) is perhaps one of the most important elements constituting the environmental health and sanitation of the urban developing sector. The management system has several components that are integrated as well as interdependent; thus, the efficiency and effectiveness of the entire system are affected when any of its functional components fails or does not perform up to the level mark of operation. Sindh Solid Waste Management Board (SSWMB) is responsible for the management of solid waste in the entire city. There is a need to adopt the engineered approach in the redesigning of the existing system. In most towns, street sweeping operations have been mechanized and done by machinery operated by vehicles. Construction of Garbage Transfer Stations (GTS) at a number of locations within the city will cut the cost of transportation of waste to disposal sites. Material processing, recovery of recyclables, compaction, volume reduction, and increase in density will enable transportation of waste to disposal sites/landfills via long vehicles (bulk transport), minimizing transport/traffic and environmental pollution-related issues. Development of disposal sites into proper sanitary landfill sites is mandatory. The transportation mechanism is through garbage vehicles using either hauled or fixed container systems employing crew for mechanical or manual loading. The number of garbage vehicles is inadequate, and due to comparatively long haulage to disposal sites, there are certain problems of frequent vehicular maintenance and high fuel costs. Foreign investors have shown interest in enterprising improvement schemes and proposed operating a solid waste management system in Karachi. The waste to Energy option is being considered to provide a practical answer to be adopted to generate power and reduce waste load – a two-pronged solution for the increasing environmental problem. The paper presents results and analysis of a recent study into waste generation and characterization probing into waste-to-energy options for Karachi City.

Keywords: waste to energy option, integrated approach, solid waste management, physical and chemical composition of waste in Karachi

Procedia PDF Downloads 29
4098 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia

Procedia PDF Downloads 371
4097 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 70
4096 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 181
4095 Effects of Methods of Confinement during Transportation of Market Pigs on Meat Quality

Authors: Pongchan Na-Lampang

Abstract:

The objective of this study was to compare the results of transport of slaughter pigs to slaughterhouse by 2 methods, i.e. individual confined and group confined on the truck on meat quality. The pigs were transported for 1 h on a distance of 70 km. The stocking densities were 0.35 m2/pig and 0.48 m2 for group and individual crate treatment, respectively. It was found that meat quality of pigs transported by 2 different methods as measured in terms of pH level (at 45 min and 48 hr post mortem), color (brightness, redness and yellowness) and water holding capacity was not significantly different.

Keywords: market pig, transportation, meat quality, confinement

Procedia PDF Downloads 381
4094 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display

Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay

Abstract:

Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.

Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission

Procedia PDF Downloads 489
4093 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 384
4092 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 525
4091 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction

Authors: Tim Steinhaus, Christian Beidl

Abstract:

Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.

Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact

Procedia PDF Downloads 118
4090 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 145