Search results for: received signal strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7446

Search results for: received signal strength

5526 Countering the Bullwhip Effect by Absorbing It Downstream in the Supply Chain

Authors: Geng Cui, Naoto Imura, Katsuhiro Nishinari, Takahiro Ezaki

Abstract:

The bullwhip effect, which refers to the amplification of demand variance as one moves up the supply chain, has been observed in various industries and extensively studied through analytic approaches. Existing methods to mitigate the bullwhip effect, such as decentralized demand information, vendor-managed inventory, and the Collaborative Planning, Forecasting, and Replenishment System, rely on the willingness and ability of supply chain participants to share their information. However, in practice, information sharing is often difficult to realize due to privacy concerns. The purpose of this study is to explore new ways to mitigate the bullwhip effect without the need for information sharing. This paper proposes a 'bullwhip absorption strategy' (BAS) to alleviate the bullwhip effect by absorbing it downstream in the supply chain. To achieve this, a two-stage supply chain system was employed, consisting of a single retailer and a single manufacturer. In each time period, the retailer receives an order generated according to an autoregressive process. Upon receiving the order, the retailer depletes the ordered amount, forecasts future demand based on past records, and places an order with the manufacturer using the order-up-to replenishment policy. The manufacturer follows a similar process. In essence, the mechanism of the model is similar to that of the beer game. The BAS is implemented at the retailer's level to counteract the bullwhip effect. This strategy requires the retailer to reduce the uncertainty in its orders, thereby absorbing the bullwhip effect downstream in the supply chain. The advantage of the BAS is that upstream participants can benefit from a reduced bullwhip effect. Although the retailer may incur additional costs, if the gain in the upstream segment can compensate for the retailer's loss, the entire supply chain will be better off. Two indicators, order variance and inventory variance, were used to quantify the bullwhip effect in relation to the strength of absorption. It was found that implementing the BAS at the retailer's level results in a reduction in both the retailer's and the manufacturer's order variances. However, when examining the impact on inventory variances, a trade-off relationship was observed. The manufacturer's inventory variance monotonically decreases with an increase in absorption strength, while the retailer's inventory variance does not always decrease as the absorption strength grows. This is especially true when the autoregression coefficient has a high value, causing the retailer's inventory variance to become a monotonically increasing function of the absorption strength. Finally, numerical simulations were conducted for verification, and the results were consistent with our theoretical analysis.

Keywords: bullwhip effect, supply chain management, inventory management, demand forecasting, order-to-up policy

Procedia PDF Downloads 60
5525 Effects of Financial and Non-Financial Accounting Information Reports on Corporate Credibility and Image of the Listed-Firms in Thailand

Authors: Anocha Rojanapanich

Abstract:

This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is used for analyzing the data. Results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. And market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship and the contribution of accounting information reports on corporate credibility is generated to the corporate image. That is the corporate image has affected by corporate credibility.

Keywords: corporate credibility, financial and non-financial reports, firms performance, corporate image

Procedia PDF Downloads 282
5524 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 148
5523 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players

Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar

Abstract:

The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.

Keywords: body composition, core training, physical fitness, volleyball

Procedia PDF Downloads 338
5522 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 265
5521 Attitude and Practice of Family Physicians in Giving Smoking Cessation Advice at King Abdul-Aziz Medical City for National Guard, Riyadh

Authors: Mohammed Alateeq, Abdulaziz Alrshoud

Abstract:

Objectives: To examine the attitude and practice of family physicians in giving smoking cessation advice at King Abdul-Aziz Medical City for National Guard, Riyadh. Methods: Cross sectional study using validated self-reported questionnaire that distributed to all family physicians and primary health care doctors at the four main family medicine and primary health care centers, KAMC, Riyadh. Results: 73 physicians are contributed in this study. 28 (38.4%) physicians were from (KASHM ALAN) clinic, 26 (35.6%) physicians were from (UM ALHAMAM) Clinic. 13 (17.8%) physicians were from (ISKAN) clinic. 6 (8.2%) physicians were from the Employee Health Clinic. 73 (100%) of the target population agreed that giving brief smoking cessation advice is part of their duties. 67 (91.7%) agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice. Only 5 (6.84%) received training courses (1-4 weeks) in smoking cessation interventions. Conclusion: Most of the target population agreed that brief smoking cessation advice is part of their duties. Also, they agreed that Presence of hospital guidelines and special clinics for smoking cessation will encourage them to provide advice although most of them did not received a formal training in smoking cessation advice.

Keywords: advice, attitude, cessation, family physicians, smoking

Procedia PDF Downloads 276
5520 Allopurinol Prophylactic Therapy in the Prevention of Contrast Induced Nephropathy in High Risk Patients Undergoing Coronary Angiography: A Prospective Randomized Controlled Trial

Authors: Seyed Fakhreddin Hejazi, Leili Iranirad, Mohammad Sadeghi, Mohsen Talebizadeh

Abstract:

Background: Contrast-induced nephropathy (CIN) remains to be a potentially serious complication of radiographic procedures. We performed this clinical trial to assess the preventive effect of allopurinol against CIN in high-risk patients undergoing coronary angiography. Methods: In this prospective randomized controlled trial, 140 patients with at least two risk factors for CIN undergoing coronary angiography were randomly assigned to either the allopurinol group or the control group. Patients in the allopurinol group received 300 mg allopurinol 24 hours before a procedure and intravenous hydration for 12 hours before and after coronary angiography, whereas patients in the control group received intravenous hydration. Serum creatinine (SCr), blood urea nitrogen (BUN) and uric acid were measured before contrast exposure and at 48 hours. CIN was defined as an increase of 25% in serum creatinine (SCr) or >0.5 mg/dl 48 hours after contrast administration. Results: CIN occurred in 11 out of 70 (7.9%) patients in the control group and in 8 out of 70 (5.7%) patients in the allopurinol group. There was no significant difference in the incidence of CIN between the two groups at 48 hours after administering the radiocontrast agent (p = 0.459). However, there were significant differences between the two groups in SCr, BUN, uric acid, and eGFR 48 hours after radiocontrast administration (p < 0.05). Conclusion: Our findings revealed that allopurinol had no substantial efficacy over hydration protocol in high-risk patients for the development of CIN.

Keywords: contrast-induced nephropathy, allopurinol, coronary angiography, contrast agent

Procedia PDF Downloads 233
5519 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 86
5518 Benefits of Whole-Body Vibration Training on Lower-Extremity Muscle Strength and Balance Control in Middle-Aged and Older Adults

Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Jenn-Woei Hsieh, Ching-Yu Tseng

Abstract:

This study aimed to determine the effects of whole-body vibration (WBV) training on lower-extremity muscle strength and balance control performance among community-dwelling middle-aged and older adults in the United States. Twenty-nine participants without any contraindication of performing WBV exercise completed all the study procedures. Participants were randomly assigned to do body weight exercise with either an individualized vibration frequency and amplitude, a fixed vibration frequency and amplitude, or no vibration. Isokinetic knee extensor power, limits of stability, and sit-to-stand tests were performed at the baseline and after 8 weeks of training. Neither the individualized frequency-amplitude WBV training protocol nor the fixed frequency-amplitude WBV training protocol improved isokinetic knee extensor power. The limits of stability endpoint excursion score for the individualized frequency-amplitude group increased by 8.8 (12.9%; p = 0.025) after training. No significant differences were observed in fixed and control group. The maximum excursion score for the individualized frequency-amplitude group at baseline increased by 9.2 (11.5%; p = 0.006) after training. The average weight transfer time score significantly decreased by 0.21 s in the fixed group. The participants in the individualized group showed a significant increase (3.2%) in weight rising index score after 8 weeks of WBV training. These results suggest that 8 weeks of WBV training improved limit of stability and sit-to-stand performance. Future studies need to determine whether WBV training improves other factors that can influence posture control.

Keywords: whole-body vibration training, muscle strength, balance control, middle-aged and older adults

Procedia PDF Downloads 212
5517 Stigmatization of Individuals Who Receive Mental Health Treatment and the Role of Social Media: A Cross-Generational Cohort Design and Extension

Authors: Denise Ben-Porath, Tracy Masterson

Abstract:

In the past, individuals who struggled with and sought treatment for mental health difficulties were stigmatized. However, the current generation holds more open attitudes around mental health issues. Indeed, public figures such as Demi Lovato, Naomi Osaka, and Simone Biles have taken to social media to break the silence around mental health, discussing their own struggles and the benefits of treatment. Thus, there is considerable reason to believe that this generation would hold fewer stigmatizing attitudes toward mental health difficulties and treatment compared to previous ones. In this study, we explored possible changes in stigma on mental health diagnosis and treatment seeking behavior between two generations: Gen Z, the current generation, and Gen X, those born between 1965-1980. It was hypothesized that Gen Z would hold less stigmatizing views on mental illness than Gen X. To examine possible changes in stigma attitudes between these two generations, we conducted a cross-generational cohort design by using the same methodology employed 20 years ago from the Ben-Porath (2002) study. Thus, participants were randomly assigned to read one of the following four case vignettes employed in the Ben-Porath (2002) study: (a) “Tom” who has received psychotherapy due to depression (b) “Tom” who has been depressed but received no psychological help, (c) “Tom” who has received medical treatment due to a back pain, or (d) “Tom” who had a back pain but did not receive medical attention. After reading the vignette, participants rated “Tom” on various personality dimensions using the IFQ Questionnaire and answered questions about their frequency of social media use and willingness to seek mental health treatment on a scale from 1-10. Identical to the results 20 years prior, a significant main effect was found for diagnosis with “Tom” being viewed in more negative terms when he was described as having depression vs. a medical condition (back pain) [F (1, 376) = 126.53, p < .001]. However, in the study conducted 20 years earlier, a significant interaction was found between diagnosis and help-seeking behavior [F (1, 376) = 8.28, p < .005]. Specifically, “Tom” was viewed in the most negative terms when described as depressed and seeking treatment. Alternatively, the current study failed to find a significant interaction between depression and help seeking behavior. These findings suggest that while individuals who hold a mental health diagnosis may still be stigmatized as they were 20 years prior, seeking treatment for mental health issues may be less so. Findings are discussed in the context of social media use and its impact on destigmatization.

Keywords: stigma, mental illness, help-seeking, social media

Procedia PDF Downloads 62
5516 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications

Authors: Tasnim Kallel, Rim Taktak

Abstract:

In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.

Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior

Procedia PDF Downloads 236
5515 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 377
5514 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy

Authors: Bara Yousef

Abstract:

The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.

Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 372
5513 A Full-Scale Test of Coping-Girder Integrated Bridge

Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An

Abstract:

Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.

Keywords: coping, crack, integrated bridge, full-scale test

Procedia PDF Downloads 431
5512 Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys

Authors: Xiping Guo, Fanglin Ge, Ping Guan

Abstract:

Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys.

Keywords: NbTiZrCrAl, refractory high entropy alloy, al content, microstructural evolution, room temperature mechanical properties, high temperature compressive strength, oxidation resistance

Procedia PDF Downloads 73
5511 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings

Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi

Abstract:

In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.

Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel

Procedia PDF Downloads 221
5510 Structural Design of a Relief Valve Considering Strength

Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee

Abstract:

A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.

Keywords: relief valve, structural analysis, structural design, strength, safety factor

Procedia PDF Downloads 292
5509 An Investigation on Energy Absorption Capacity of a Composite Metal Foam Developed from Aluminum by Reinforcing with Cermet Hollow Spheres

Authors: Fisseha Zewdie, Naresh Bhatnagar

Abstract:

Lightweight and strong aluminum foam is developed by reinforcing Al-Si-Cu alloy (LM24) with Cermet Hollow Spheres (CHS) as porous creating agents. The foam samples were prepared by mixing the CHS in molten LM24 at 750°C, using gravity and stir casting. The CHSs were fabricated using a blend of silicon carbide and stainless-steel powders using the powder metallurgy technique. It was found that CHS reinforcement greatly enhances the performance of the composite metal foam, making it suitable for high impact loading applications such as crash protection and shock absorption. This study examined the strength, density, energy absorption and possible applications of the new aluminum foam. The results revealed that the LM24 foam reinforced with the CHS has the highest energy absorption of about 88 MJ/m3 among all categories of foam samples tested. Its density was found to be 1.3 g/cm3, while the strength, densification strains and porosity were 420 MPa, 34% and 70%, respectively. Besides, the matrix and reinforcement's microstructure, chemical composition, X-ray diffraction, HRTEM and related micrographic analyses are performed for characterization and verifications.

Keywords: composite metal foam, hollow spheres, gravity casting, energy absorption

Procedia PDF Downloads 53
5508 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding

Authors: S. Malebary, W. Xu

Abstract:

Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.

Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone

Procedia PDF Downloads 292
5507 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 129
5506 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 69
5505 The Use of Seashell by-Products in Pervious Concrete Pavers

Authors: Dang Hanh Nguyen, Nassim Sebaibi, Mohamed Boutouil, Lydia Leleyter, Fabienne Baraud

Abstract:

Pervious concrete is a green alternative to conventional pavements with minimal fine aggregate and a high void content. Pervious concrete allows water to infiltrate through the pavement, thereby reducing the runoff and the requirement for stormwater management systems. Seashell By-Products (SBP) are produced in an important quantity in France and are considered as waste. This work investigated to use SBP in pervious concrete and produce an even more environmentally friendly product, Pervious Concrete Pavers. The research methodology involved substituting the coarse aggregate in the previous concrete mix design with 20%, 40% and 60% SBP. The testing showed that pervious concrete containing less than 40% SBP had strengths, permeability and void content which are comparable to the pervious concrete containing with only natural aggregate. The samples that contained 40% SBP or higher had a significant loss in strength and an increase in permeability and a void content from the control mix pervious concrete. On the basis of the results in this research, it was found that the natural aggregate can be substituted by SBP without affecting the delicate balance of a pervious concrete mix. Additional, it is recommended that the optimum replacement percentage for SBP in pervious concrete is 40 % direct replacement of natural coarse aggregate while maintaining the structural performance and drainage capabilities of the pervious concrete.

Keywords: seashell by-products, pervious concrete pavers, permeability, mechanical strength

Procedia PDF Downloads 468
5504 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 89
5503 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 64
5502 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique

Authors: Navajyoti Panda, R. S. Pawar

Abstract:

In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.

Keywords: bending, spring-back, v-bending, FEM, Taguchi, HSLA 420 and St12 materials, HyperForm, profile projector

Procedia PDF Downloads 177
5501 A Static and Dynamic Slope Stability Analysis of Sonapur

Authors: Rupam Saikia, Ashim Kanti Dey

Abstract:

Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.

Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method

Procedia PDF Downloads 249
5500 Investigation of Mechanical Properties of Epoxy-Nanocomposite Reinforced with Copper Coated MWCNTs

Authors: M. Nazem Salimi, C. Abrinia, M. Baniassadi, M. Ehsani

Abstract:

Mechanical properties of epoxy based nanocomposites containing copper coated MWCNTs were investigated and a comparative study between nanocomposites containing functionalized MWCNTs and copper coated MWCNTs which are already functionalized was conducted. The MWCNTs was deposited with copper nanoparticles through electroless deposition process after accomplishment of "two-step" method as sensitization and activation procedures on oxidized MWCNTs. In addition, functionalization of MWCNTs was carried out through combination of two covalent and non-covalent funcionalization methods using HNO3 for acid solution of covalent treatment and Triton X100 as non-ionic surfactant of non-covalent treatment. The presence of functional groups and removal of impurities of MWCNTs were confirmed by FTIR and Raman spectroscopy, respectively. The layer of copper nanoparticles on the MWCNTs wall increasing its diameter was observed by SEM. Utilizing solution blending process, 0.1%, 0.5% and 1.5% wt loading of both copper coated MWCNTs and non-coated MWCNTs were used to prepare epoxy-based nanocomposites. The tensile, flexural and impact properties of nanocomposites were investigated. The results of tensile test demonstrated that nanocomposites containing copper coated MWCNTs exhibited brittle behavior compared to those reinforced with functionalized MWCNTs, whereas former one exhibited higher values of modulus than latter one for concentrations more than 0.4% wt. Presence of copper particles on MWCNTs surface decreased the tensile strength of nanocomposites. In comparison to pure epoxy, nanocomposites with treated-MWCNTs and Cu-MWCNTs loading of 0.1% wt showed an increase of 35% and 51.6% for flexural strength beside 20% and 30% increase in flexural modulus, respectively, whereas flexural properties of both naocomposites decreased with increasing of CNTs concentration. The results of impact strength of nanocomposites with Cu-CNTs demonstrated that impact properties decreased with increasing of filler content with a optimum value at 0.1% wt while in high concentrations impact properties of Cu-nanocomposites exhibited lower values than f-MWCNT nanocomposites.

Keywords: epoxyresin, nanocomposite, functionalization, copper, electroless deposition process, mechanical properties

Procedia PDF Downloads 357
5499 Audit Outcome Cardiac Arrest Cases (2019-2020) in Emergency Department RIPAS Hospital, Brunei Darussalam

Authors: Victor Au, Khin Maung Than, Zaw Win Aung, Linawati Jumat

Abstract:

Background & Objectives: Cardiac arrests can occur anywhere or anytime, and most of the cases will be brought to the emergency department except the cases that happened in at in-patient setting. Raja IsteriPangiran Anak Saleha (RIPAS) Hospital is the only tertiary government hospital which located in Brunei Muara district and received all referral from other Brunei districts. Data of cardiac arrests in Brunei Darussalam scattered between Emergency Medical Ambulance Services (EMAS), Emergency Department (ED), general inpatient wards, and Intensive Care Unit (ICU). In this audit, we only focused on cardiac arrest cases which had happened or presented to the emergency department RIPAS Hospital. Theobjectives of this audit were to look at demographic of cardiac arrest cases and the survival to discharge rate of In-Hospital Cardiac Arrest (IHCA) and Out-Hospital Cardiac Arrest (OHCA). Methodology: This audit retrospective study was conducted on all cardiac arrest cases that underwent Cardiopulmonary Resuscitation (CPR) in ED RIPAS Hospital, Brunei Muara, in the year 2019-2020. All cardiac arrest cases that happened or were brought in to emergency department were included. All the relevant data were retrieved from ED visit registry book and electronic medical record “Bru-HIMS” with keyword diagnosis of “cardiac arrest”. Data were analyzed and tabulated using Excel software. Result: 313 cardiac arrests were recorded in the emergency department in year 2019-2020. 92% cases were categorized as OHCA, and the remaining 8% as IHCA. Majority of the cases were male with age between 50-60 years old. In OHCA subgroup, only 12.4% received bystander CPR, and 0.4% received Automatic External Defibrillator (AED) before emergency medical personnel arrived. Initial shockable rhythm in IHCA group accounted for 12% compare to 4.9% in OHCA group. Outcome of ED resuscitation, 32% of IHCA group achieved return of spontaneous circulation (ROSC) with a survival to discharge rate was 16%. For OHCA group, 12.35% achieved ROSC, but unfortunately, none of them survive till discharge. Conclusion: Standardized registry for cardiac arrest in the emergency department is required to provide valid baseline data to measure the quality and outcome of cardiac arrest. Zero survival rate for out hospital cardiac arrest is very concerning, and it might represent the significant breach in cardiac arrest chains of survival. Systematic prospective data collection is needed to identify contributing factors and to improve resuscitation outcome.

Keywords: cardiac arrest, OHCA, IHCA, resuscitation, emergency department

Procedia PDF Downloads 85
5498 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures

Authors: Latife Merve Oktay, Berrin Tugrul

Abstract:

Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.

Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer

Procedia PDF Downloads 345
5497 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 322