Search results for: multiple input multiple output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8069

Search results for: multiple input multiple output

6149 DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy

Authors: Spira A., Marabelle A., Kientop D., Moser E., Mumm J.

Abstract:

Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities.

Keywords: cytokine, EGFR over expression, interleukine-2, interleukine-10, clinical trial

Procedia PDF Downloads 86
6148 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 528
6147 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 136
6146 Generalized Model Estimating Strength of Bauxite Residue-Lime Mix

Authors: Sujeet Kumar, Arun Prasad

Abstract:

The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength.

Keywords: bauxite residue, curing time, porosity/volumetric lime ratio, unconfined compressive strength

Procedia PDF Downloads 236
6145 Restructuring of Embedded System Design Course: Making It Industry Compliant

Authors: Geetishree Mishra, S. Akhila

Abstract:

Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.

Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology

Procedia PDF Downloads 662
6144 Synchronization of Bus Frames during Universal Serial Bus Transfer

Authors: Petr Šimek

Abstract:

This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.

Keywords: analysis, CAN, interface, LIN, synchronization, USB

Procedia PDF Downloads 63
6143 Response of Concrete Panels Subjected to Compression-Tension State of Stresses

Authors: Mohammed F. Almograbi

Abstract:

For reinforced concrete panels the risk of failure due to compression -tension state of stresses, results from pure shear or torsion, can be a major problem. The present calculation methods for such stresses from multiple influences are without taking into account the softening of cracked concrete remains conservative. The non-linear finite element method has become an important and increasingly used tool for the analysis and assessment of the structures by including cracking softening and tension-stiffening. The aim of this paper is to test a computer program refined recently and to simulate the compression response of cracked concrete element and to compare with the available experimental results.

Keywords: reinforced concrete panels, compression-tension, shear, torsion, compression softening, tension stiffening, non-linear finite element analysis

Procedia PDF Downloads 337
6142 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program

Authors: Secil Kaya Gulen

Abstract:

Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.

Keywords: distance education, virtual classrooms, higher education, e-learning

Procedia PDF Downloads 269
6141 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison

Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.

Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison

Procedia PDF Downloads 163
6140 A Dynamic Panel Model to Evaluate the Impact of Debt Relief on Poverty

Authors: Loujaina Abdelwahed

Abstract:

Debt relief granted to low-and middle-income countries effectively provides additional funds for governments that can be used to increase public investment on poverty-reducing services to alleviate poverty and boost economic growth. However, little is known about the extent to which the poor benefit from the increased public investment. This study aims to assess the impact of debt relief granted through multiple initiatives during the 1990s on poverty reduction. In particular, it assesses the impact on the level, depth and severity of poverty in 76 low-and middle income countries over the period 1990-2011. Debt relief is found to have a significant impact on reducing the level, the depth and the severity of poverty. Analysis of the different types of debt relief reveals that debt service relief reduces poverty, whereas debt principle relief does not have a significant impact.

Keywords: debt relief, developing countries, HIPC, poverty, system GMM estimator

Procedia PDF Downloads 398
6139 Trend and Cuses of Decline in Trifoliate Yam (Dioscorea dumentorum) Production in Enugu State, Nigeria: Implication for Food Security and Biodiversity Conservation

Authors: J. C. Iwuchukwu, K. C. Okwor

Abstract:

In recent time and in the study area, yam farmers are moving into less laborious and more economical crops and very few yam farmers are growing trifoliate yam. In yam markets, little or no bitter yam is displayed or sold. The work was therefore designed to ascertain trend and causes of decline in trifoliate yam production in Enugu state. Three agricultural zones, six blocks, eighteen circles and one hundred and eight trifoliate yam farmers that were purposively selected constituted sample for the study. An interview schedule was used to collect data while percentage, mean score and standard deviation were used for data analysis. Findings of the study revealed that the respondents had no extension contact, Majority (90.7%) sourced information on trifoliate yam from neighbours/friends/relatives and produced mainly for consumption (67.6%) during rainy season (70.4%). Trifoliate yam was produced manually(71.3%) and organically (58.3%) in a mixture of other crops (87%) using indigenous/local varieties (73.1%). Mean size of land allocated to trifoliate yam production was relatively steady, mean cost of input and income were increasing while output was decreasing within the years under consideration (before 2001 to 2014). Poor/lack of finance(M=1.8) and drudgery associated with trifoliate yam product(M=1.72) were some of the causes of decline in trifoliate yam production in the area. The study recommended that more research and public enlightenment campaigns on the importance of trifoliate yam should be carried out to encourage and consolidate farmers and the masses effort in production and consumption of the crop so that it will not go extinct and then contribute to food security.

Keywords: causes, decline, trend, trifoliate yam

Procedia PDF Downloads 403
6138 Assessment of Noise Pollution in the City of Biskra, Algeria

Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk

Abstract:

In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.

Keywords: road traffic, noise pollution, sound intensity, public health

Procedia PDF Downloads 267
6137 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
6136 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 229
6135 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 255
6134 Design of Bayesian MDS Sampling Plan Based on the Process Capability Index

Authors: Davood Shishebori, Mohammad Saber Fallah Nezhad, Sina Seifi

Abstract:

In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out.

Keywords: MDS sampling plan, RGS plan, sampling plan for resubmitted lots, process capability index (PCI), average sample number (ASN), Bayesian approach

Procedia PDF Downloads 301
6133 Triple Case Phantom Tumor of Lungs

Authors: Angelis P. Barlampas

Abstract:

Introduction: The term phantom lung mass describes the ovoid collection of fluid within the interlobular fissure, which initially creates the impression of a mass. The problem of correct differential diagnosis is great, especially in plain radiography. A case is presented with three nodular pulmonary foci, the shape, location, and density of which, as well as the presence of chronic loculated pleural effusions, suggest the presence of multiple phantom tumors of the lung. Purpose: The aim of this paper is to draw the attention of non-experienced and non-specialized physicians to the existence of benign findings that mimic pathological conditions and vice versa. The careful study of a radiological examination and the comparison with previous exams or further control protect against quick wrong conclusions. Methods: A hospitalized patient underwent a non-contrast CT scan of the chest as part of the general control of her situation. Results: Computed tomography revealed pleural effusions, some of them loculated, increased cardiothoracic index, as well as the presence of three nodular foci, one in the left lung and two in the right with a maximum density of up to 18 Hounsfield units and a mean diameter of approximately five centimeters. Two of them are located in the characteristical anatomical position of the major interlobular fissure. The third one is located in the area of the right lower lobe’s posterior basal part, and it presents the same characteristics as the previous ones and is likely to be a loculated fluid collection, within an auxiliary interlobular fissure or a cyst, in the context of the patient's more general pleural entrapments and loculations. The differential diagnosis of nodular foci based on their imaging characteristics includes the following: a) rare metastatic foci with low density (liposarcoma, mucous tumors of the digestive or genital system, necrotic metastatic foci, metastatic renal cancer, etc.), b) necrotic multiple primary lung tumor locations (squamous epithelial cancer, etc. ), c) hamartomas of the lung, d) fibrotic tumors of the interlobular fissures, e) lipoid pneumonia, f) fluid concentrations within the interlobular fissures, g) lipoma of the lung, h) myelolipomas of the lung. Conclusions: The collection of fluid within the interlobular fissure of the lung can give the false impression of a lung mass, particularly on plain chest radiography. In the case of computed tomography, the ability to measure the density of a lesion, combined with the provided high anatomical details of the location and characteristics of the lesion, can lead relatively easily to the correct diagnosis. In cases of doubt or image artifacts, comparison with previous or subsequent examinations can resolve any disagreements, while in rare cases, intravenous contrast may be necessary.

Keywords: phantom mass, chest CT, pleural effusion, cancer

Procedia PDF Downloads 55
6132 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 350
6131 A Continuous Switching Technique for a Single Phase Bridgeless and Transformer-Less Active Rectifier with High Power Factor and Voltage Stabilization

Authors: Rahul Ganpat Mapari, D. G. Wakde

Abstract:

In this paper, a proposed approach to improve the power factor of single-phase rectifiers and to regulate the output voltage against the change in grid voltage and load is presented. This converter topology is evaluated on the basis of performance and its salient features like simplicity, low cost and high performance are discussed to analyze its applicability. The proposed control strategy is bridgeless, transformer-less and output current sensor-less and consists of only two Bi-directional IGBTs and two diodes. The voltage regulation is achieved by a simple voltage divider to communicate to a controller to control the duty cycles of PWM. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.

Keywords: Active Rectifier (AC-DC), power factor, single phase, voltage regulation

Procedia PDF Downloads 580
6130 End To End Process to Automate Batch Application

Authors: Nagmani Lnu

Abstract:

Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.

Keywords: batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing

Procedia PDF Downloads 60
6129 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment

Authors: Anju Bala, Inderveer Chana

Abstract:

Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.

Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation

Procedia PDF Downloads 518
6128 Identifying the Barriers to Institutionalizing a One Health Concept in Responding to Zoonotic Diseases in South Asia

Authors: Rojan Dahal

Abstract:

One Health refers to a collaborative effort between multiple disciplines - locally, nationally, and globally - to attain optimal health. Although there were unprecedented intersectoral alliances between the animal and human health sectors during the avian influenza outbreak, there are different views and perceptions concerning institutionalizing One Health in South Asia. It is likely a structural barrier between the relevant professionals working in different entities or ministries when it comes to collaborating on One Health actions regarding zoonotic diseases. Politicians and the public will likely need to invest large amounts of money, demonstrate political will, and understand how One Health works to overcome these barriers. One Health might be hard to invest in South Asian countries, where the benefits are based primarily on models and projections and where numerous issues related to development and health need urgent attention. The other potential barrier to enabling the One Health concept in responding to zoonotic diseases is a failure to represent One Health in zoonotic disease control and prevention measures in the national health policy, which is a critical component of institutionalizing the One Health concept. One Health cannot be institutionalized without acknowledging the linkages between animal, human, and environmental sectors in dealing with zoonotic diseases. Efforts have been made in the past to prepare a preparedness plan for One Health implementation, but little has been done to establish a policy environment to institutionalize One Health. It is often assumed that health policy refers specifically to medical care issues and health care services. When drafting, reviewing, and redrafting the policy, it is important to engage a wide range of stakeholders. One Health institutionalization may also be hindered by the interplay between One Health professionals and bureaucratic inertia in defining the priorities of diseases due to competing interests on limited budgets. There is a possibility that policymakers do not recognize the importance of veterinary professionals in preventing human diseases originating in animals. Compared to veterinary medicine, the human health sector has produced most of the investment and research outputs related to zoonotic diseases. The public health profession may consider itself superior to the veterinary profession. Zoonotic diseases might not be recognized as threats to human health, impeding integrated policies. The effort of One Health institutionalization remained only among the donor agencies and multi-sectoral organizations. There is a need for strong political will and state capacity to overcome the existing institutional, financial, and professional barriers for its effective implementation. There is a need to assess the structural challenges, policy challenges, and the attitude of the professional working in the multiple disciplines related to One Health. Limited research has been conducted to identify the reasons behind the barriers to institutionalizing the One Health concept in South Asia. Institutionalizing One Health in responding to zoonotic diseases breaks down silos and integrates animals, humans, and the environment.

Keywords: one health, institutionalization, South Asia, institutionalizations

Procedia PDF Downloads 99
6127 The Association of Cone-Shaped Epiphysis and Poland Syndrome: A Case Report

Authors: Mohammad Alqattan, Tala Alkhunani, Reema Al, Aldawish, Felwa Almurshard, Abdullah Alzahrani

Abstract:

: Poland’s Syndrome is a congenital anomaly with two clinical features : unilateral agenesis of the pectoralis major and ipsilateral hand symbrachydactyly. Case presentation: We report a rare case of bilateral Poland’s syndrome with several unique features. Discussion: Poland’s syndrome is thought to be due to a vascular insult to the subclavian axis around the 6th week of gestation. Our patient has multiple rare and unique features of Poland’s syndrome. Conclusion: To our best knowledge, for the first time in the literature we associate Poland’s syndrome with cone-shaped epiphysis of the metacarpals of all fingers. Bilaterality, cleft hand deformity, and dextrocardia, were also rare features in our patient.

Keywords: Poland's syndrome, cleft hand deformity, bilaterality, dextrocardia, cone-shaped epiphysis

Procedia PDF Downloads 129
6126 Financial Information Transparency on Investor Behavior in the Private Company in Dusit Area

Authors: Yosapon Kidsuntad

Abstract:

The purpose of this dissertation was to explore the relationship between financial transparency and investor behavior. In carrying out this inquiry, the researcher used a questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The results revealed that there are significant differences investor perceptions of the different dimensions of financial information transparency. These differences correspond to demographical variables with the exception of the educational level variable. It was also found that there are relationships between investor perceptions of the dimensions of financial information transparency and investor behavior in the private company in Dusit Area. Finally, the researcher also found that there are differences in investor behavior corresponding to different categories of investor experience.

Keywords: financial information transparency, investor behavior, private company, Dusit Area

Procedia PDF Downloads 330
6125 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: goal programming approach, GP, production planning, serial manufacturing process, wire and cable industry

Procedia PDF Downloads 161
6124 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 535
6123 Adaptive Dehazing Using Fusion Strategy

Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha

Abstract:

The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.

Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map

Procedia PDF Downloads 465
6122 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
6121 Economic Stability and Legitimate Expectations in Foreign Investment Rights

Authors: Mehdi Ghaemi

Abstract:

Within the current paper, there is an attempt to examine the legal system that overrules economic stability and legitimate expectations of foreign investment rights. Studies show that Meeting the legitimate expectations of foreign investment is one of the rights and privileges which obviously are to be benefited from by all types of foreign investments. The legitimate expectations of foreign investors are protected and structured strongly with the help of international investment laws. The body of international investment laws is faced with multiple challenges with respect to the legitimate expectations of foreign investments, including the Economic stability and the public interest of the host country, the attitude of the host country towards the legitimate rights and privileges of the foreign investment, the ways to meet and to control those expectations, and also the assessment of the regulations of the host country which would affect the investing bodies within different circumstances.

Keywords: foreign investment, legitimate expectations, regulating investments, international investment

Procedia PDF Downloads 104
6120 Neuropedagogy as a Scientific Discipline: Interdisciplinary Description of the Theoretical Basis for the Development of a Research Field

Authors: M. Chojak

Abstract:

Recently, more and more scientific disciplines refer to research in the field of neurobiology. Interdisciplinary research procedures are created using modern methods of brain imaging. Neither did the pedagogues start looking for neuronal conditions for various processes. The publications began to show concepts such as ‘neuropedagogy’, ‘neuroeducation’, ‘neurodidactics’, ‘brain-friendly education’. They were and are still used interchangeably. In the offer of training for teachers, the topics of multiple intelligences or educational kinesiology began to be more and more popular. These and other ideas have been actively introduced into the curricula. To our best knowledge, the literature on the subject lacks articles organizing the new nomenclature and indicating the methodological framework for research that would confirm the effectiveness of the above-mentioned innovations. The author of this article tries to find the place for neuropedagogy in the system of sciences, define its subject of research, methodological framework and basic concepts. This is necessary to plan studies that will verify the so-called neuromyths.

Keywords: brain, education, neuropedagogy, research

Procedia PDF Downloads 173