Search results for: intelligent transportation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2181

Search results for: intelligent transportation

261 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 271
260 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 19
259 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 64
258 Analysis of Constraints and Opportunities in Dairy Production in Botswana

Authors: Som Pal Baliyan

Abstract:

Dairy enterprise has been a major source of employment and income generation in most of the economies worldwide. Botswana government has also identified dairy as one of the agricultural sectors towards diversification of the mineral dependent economy of the country. The huge gap between local demand and supply of milk and milk products indicated that there are not only constraints but also; opportunities exist in this sub sector of agriculture. Therefore, this study was an attempt to identify constraints and opportunities in dairy production industry in Botswana. The possible ways to mitigate the constraints were also identified. The findings should assist the stakeholders especially, policy makers in the formulation of effective policies for the growth of dairy sector in the country. This quantitative study adopted a survey research design. A final survey followed by a pilot survey was conducted for data collection. The purpose of the pilot survey was to collect basic information on the nature and extent of the constraints, opportunities and ways to mitigate the constraints in dairy production. Based on the information from pilot survey, a four point Likert’s scale type questionnaire was constructed, validated and tested for its reliability. The data for the final survey were collected from purposively selected twenty five dairy farms. The descriptive statistical tools were employed to analyze data. Among the twelve constraints identified; high feed costs, feed shortage and availability, lack of technical support, lack of skilled manpower, high prevalence of pests and diseases and, lack of dairy related technologies were the six major constraints in dairy production. Grain feed production, roughage feed production, manufacturing of dairy feed, establishment of milk processing industry and, development of transportation systems were the five major opportunities among the eight opportunities identified. Increasing production of animal feed locally, increasing roughage feed production locally, provision of subsidy on animal feed, easy access to sufficient financial support, training of the farmers and, effective control of pests and diseases were identified as the six major ways to mitigate the constraints. It was recommended that the identified constraints and opportunities as well as the ways to mitigate the constraints need to be carefully considered by the stakeholders especially, policy makers during the formulation and implementation of the policies for the development of dairy sector in Botswana.

Keywords: dairy enterprise, milk production, opportunities, production constraints

Procedia PDF Downloads 405
257 Process Modeling in an Aeronautics Context

Authors: Sophie Lemoussu, Jean-Charles Chaudemar, Robertus A. Vingerhoeds

Abstract:

Many innovative projects exist in the field of aeronautics, each addressing specific areas so to reduce weight, increase autonomy, reduction of CO2, etc. In many cases, such innovative developments are being carried out by very small enterprises (VSE’s) or small and medium sized-enterprises (SME’s). A good example concerns airships that are being studied as a real alternative to passenger and cargo transportation. Today, no international regulations propose a precise and sufficiently detailed framework for the development and certification of airships. The absence of such a regulatory framework requires a very close contact with regulatory instances. However, VSE’s/SME’s do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses an additional challenge for those VSE’s/SME’s, in particular those that have system integration responsibilities and that must provide all the necessary evidence to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The main objective of this research is to provide a methodological framework enabling VSE’s/SME’s with limited resources to organize the development of airships while taking into account the constraints of safety, cost, time and performance. This paper proposes to provide a contribution to this problematic by proposing a Model-Based Systems Engineering approach. Through a comprehensive process modeling approach applied to the development processes, the regulatory constraints, existing best practices, etc., a good image can be obtained as to the process landscape that may influence the development of airships. To this effect, not only the necessary regulatory information is taken on board, also other international standards and norms on systems engineering and project management are being modeled and taken into account. In a next step, the model can be used for analysis of the specific situation for given developments, derive critical paths for the development, identify eventual conflicting aspects between the norms, standards, and regulatory expectations, or also identify those areas where not enough information is available. Once critical paths are known, optimization approaches can be used and decision support techniques can be applied so to better support VSE’s/SME’s in their innovative developments. This paper reports on the adopted modeling approach, the retained modeling languages, and how they all fit together.

Keywords: aeronautics, certification, process modeling, project management, regulation, SME, systems engineering, VSE

Procedia PDF Downloads 161
256 Developing Offshore Energy Grids in Norway as Capability Platforms

Authors: Vidar Hepsø

Abstract:

The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.

Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model

Procedia PDF Downloads 68
255 Extraction of Biodiesel from Microalgae Using the Solvent Extraction Process, Typically Soxhlet Extraction Method

Authors: Gracious Tendai Matayaya

Abstract:

The world is facing problems in finding alternative resources to offset the decline in global petroleum reserves. The use of fossil fuels has prompted biofuel development, particularly in the transportation sector. In these circumstances, looking for alternative renewable energy sources makes sense. Petroleum-based fuels also result in a lot of carbon dioxide being released into the environment causing global warming. Replacing petroleum and fossil fuel-based fuels with biofuels has the advantage of reducing undesirable aspects of these fuels, which are mostly the production of greenhouse gas and dependence on unstable foreign suppliers. Algae refer to a group of aquatic microorganisms that produce a lot of lipids up to 60% of their total weight. This project aims to exploit the large amounts of oil produced by these microorganisms in the Soxhlet extraction to make biodiesel. Experiments were conducted to establish the cultivability of algae, harvesting methods, the oil extraction process, and the transesterification process. Although there are various methods for producing algal oil, the Soxhlet extraction method was employed for this particular research. After extraction, the oil was characterized before being used in the transesterification process that used methanol and hydrochloric acid as the process reactants. The properties of the resulting biodiesel were then determined. Because there is a requirement to dry wet algae, the experimental findings showed that Soxhlet extraction was the optimum way to produce a higher yield of microalgal oil. Upon cultivating algae, Compound D fertilizer was added as a source of nutrients (Phosphorous and Nitrogen), and the highest growth of algae was observed at 6 days (using 2 g of fertilizer), after which it started to decrease. Butanol, hexane, heptane and acetone have been experimented with as solvents, and heptane gave the highest amount of oil (89ml of oil) when 300 ml of solvent was used. This was compared to 73.21ml produced by butanol, 81.90 produced by hexane and 69.57ml produced by acetone, and as a result, heptane was used for the rest of the experiments, which included a variation of the mass of dried algae and time of extraction. This meant that the oil composition of algae was higher than other oil sources like peanuts, soybean etc. Algal oil was heated at 150℃ for 150 minutes in the presence of methanol (reactant) and hydrochloric acid (HCl), which was used as a catalyst. A temperature of 200℃ produced 93.64%, and a temperature of 250℃ produced 92.13 of biodiesel at 150 minutes.

Keywords: microalgae, algal oil, biodiesel, soxhlet extraction

Procedia PDF Downloads 82
254 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
253 Using a Mobile App to Foster Children Active Travel to School in Spain

Authors: P. Pérez-Martín, G. Pedrós, P. Martínez-Jiménez, M. Varo-Martínez

Abstract:

In recent decades, family habits related to children’s displacements to school have changed, increasing motorized travels against active modes. This entails a major negative impact on the urban environment, road safety in cities and the physical and psychological development of children. One of the more common actions used to reverse this trend is Walking School Bus (WSB), which consists of a predefined adult-scorted pedestrian route to school with several stops along the path where schoolchildren are collected. At Tirso de Molina School in Cordoba (Spain), a new ICT-based methodology to deploy WSB has been tested. A mobile app that allows the geoposition of the group, the notification of the arrival and real-time communication between the WSB participants have been presented to the families in order to organize and register the daily participation. After an initial survey to know the travel mode and the spatial distribution of the interested families, three WSB routes have been established and the families have been trained in the app usage. During nine weeks, 33 children have joined the WSB and their parents have accompanied the groups in turns. A high recurrence in the attendance has been registered. Through a final survey, participants have valued highly the tool and the methodology designed, emphasizing as most useful features of the mobile app: notifications system, chat and real-time monitoring. It has also been found that the tool has had a major impact on the degree of confidence of parents regarding the autonomous on foot displacement of their children to school. Moreover, 37,9% of the participant families have reported a total or partial modal shift from car to walking, and the benefits more reported are an increment of the parents available time and less problems in the travel to school daily organization. As a consequence, It has been proved the effectiveness of this user-centric innovative ICT-based methodology to reduce the levels of private car drop offs, minimize barriers of time constraints, volunteer recruitment, and parents’ safety concerns, while, at the same time, increase convenience and time savings for families. This pilot study can offer guidance for community coordinated actions and local authority interventions to support sustainable school travel outcomes.

Keywords: active travel, mobile app, sustainable mobility, urban transportation planning, walking school bus

Procedia PDF Downloads 336
252 A Small-Scale Survey on Risk Factors of Musculoskeletal Disorders in Workers of Logistics Companies in Cyprus and on the Early Adoption of Industrial Exoskeletons as Mitigation Measure

Authors: Kyriacos Clerides, Panagiotis Herodotou, Constantina Polycarpou, Evagoras Xydas

Abstract:

Background: Musculoskeletal disorders (MSDs) in the workplace is a very common problem in Europe which are caused by multiple risk factors. In recent years, wearable devices and exoskeletons for the workplace have been trying to address the various risk factors that are associated with strenuous tasks in the workplace. The logistics sector is a huge sector that includes warehousing, storage, and transportation. However, the task associated with logistics is not well-studied in terms of MSDs risk. This study was aimed at looking into the MSDs affecting workers of logistics companies. It compares the prevalence of MSDs among workers and evaluates multiple risk factors that contribute to the development of MSDs. Moreover, this study seeks to obtain user feedback on the adoption of exoskeletons in such a work environment. Materials and Methods: The study was conducted among workers in logistics companies in Nicosia, Cyprus, from July to September 2022. A set of standardized questionnaires was used for collecting different types of data. Results: A high proportion of logistics professionals reported MSDs in one or more other body regions, the lower back being the most commonly affected area. Working in the same position for long periods, working in awkward postures, and handling an excessive load, were found to be the most commonly reported job risk factor that contributed to the development of MSDs, in this study. A significant number of participants consider the back region as the most to be benefited from a wearable exoskeleton device. Half of the participants would like to have at least a 50% reduction in their daily effort. The most important characteristics for the adoption of exoskeleton devices were found to be how comfortable the device is and its weight. Conclusion: Lower back and posture were the highest risk factors among all logistics professionals assessed in this study. A larger scale study using quantitative analytical tools may give a more accurate estimate of MSDs, which would pave the way for making more precise recommendations to eliminate the risk factors and thereby prevent MSDs. A follow-up study using exoskeletons in the workplace should be done to assess whether they assist in MSD prevention.

Keywords: musculoskeletal disorders, occupational health, safety, occupational risk, logistic companies, workers, Cyprus, industrial exoskeletons, wearable devices

Procedia PDF Downloads 107
251 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 256
250 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics

Authors: Namasivayam Navaranjan, Eric Dimla

Abstract:

The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.

Keywords: bioplastics, plastics, renewable resources, biomass

Procedia PDF Downloads 308
249 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 100
248 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 139
247 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253
246 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities

Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou

Abstract:

Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.

Keywords: accessibility, cycling, green spaces, spatial data, urban environment

Procedia PDF Downloads 111
245 Guests’ Satisfaction and Intention to Revisit Smart Hotels: Qualitative Interviews Approach

Authors: Raymond Chi Fai Si Tou, Jacey Ja Young Choe, Amy Siu Ian So

Abstract:

Smart hotels can be defined as the hotel which has an intelligent system, through digitalization and networking which achieve hotel management and service information. In addition, smart hotels include high-end designs that integrate information and communication technology with hotel management fulfilling the guests’ needs and improving the quality, efficiency and satisfaction of hotel management. The purpose of this study is to identify appropriate factors that may influence guests’ satisfaction and intention to revisit Smart Hotels based on service quality measurement of lodging quality index and extended UTAUT theory. Unified Theory of Acceptance and Use of Technology (UTAUT) is adopted as a framework to explain technology acceptance and use. Since smart hotels are technology-based infrastructure hotels, UTATU theory could be as the theoretical background to examine the guests’ acceptance and use after staying in smart hotels. The UTAUT identifies four key drivers of the adoption of information systems: performance expectancy, effort expectancy, social influence, and facilitating conditions. The extended UTAUT modifies the definitions of the seven constructs for consideration; the four previously cited constructs of the UTAUT model together with three new additional constructs, which including hedonic motivation, price value and habit. Thus, the seven constructs from the extended UTAUT theory could be adopted to understand their intention to revisit smart hotels. The service quality model will also be adopted and integrated into the framework to understand the guests’ intention of smart hotels. There are rare studies to examine the service quality on guests’ satisfaction and intention to revisit in smart hotels. In this study, Lodging Quality Index (LQI) will be adopted to measure the service quality in smart hotels. Using integrated UTAUT theory and service quality model because technological applications and services require using more than one model to understand the complicated situation for customers’ acceptance of new technology. Moreover, an integrated model could provide more perspective insights to explain the relationships of the constructs that could not be obtained from only one model. For this research, ten in-depth interviews are planned to recruit this study. In order to confirm the applicability of the proposed framework and gain an overview of the guest experience of smart hotels from the hospitality industry, in-depth interviews with the hotel guests and industry practitioners will be accomplished. In terms of the theoretical contribution, it predicts that the integrated models from the UTAUT theory and the service quality will provide new insights to understand factors that influence the guests’ satisfaction and intention to revisit smart hotels. After this study identifies influential factors, smart hotel practitioners could understand which factors may significantly influence smart hotel guests’ satisfaction and intention to revisit. In addition, smart hotel practitioners could also provide outstanding guests experience by improving their service quality based on the identified dimensions from the service quality measurement. Thus, it will be beneficial to the sustainability of the smart hotels business.

Keywords: intention to revisit, guest satisfaction, qualitative interviews, smart hotels

Procedia PDF Downloads 208
244 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 216
243 City Buses and Sustainable Urban Mobility in Kano Metropolis 1967-2015: An Historical Perspective

Authors: Yusuf Umar Madugu

Abstract:

Since its creation in 1967, Kano has tremendously undergone political, social and economic transformations. Public urban transportation has been playing a vital role in sustaining economic growth of Kano metropolis, especially with the existence of modern buses with the regular network of roads, in all the main centers of trade. This study, therefore, centers on the role of intra-city buses in molding the economy of Kano. Its main focus is post-colonial Kano (i.e. 1967-2015), a period that witnessed rapid expansion of commercial activities and ever increasing urbanization which goes along with it population explosion. The commuters patronized the urban transport, a situation that made the business lucrative. More so, the traders who had come from within and outside Kano relied heavily on commercial vehicles to transport their merchandise to their various destinations. Commercial road transport system, therefore, had become well organized in Kano with a significant number of people earning their means of livelihood from it. It also serves as a source of revenue to governments at different levels. However, the study of transport and development as an academic discipline is inter-disciplinary in nature. This study, therefore, employs the services and the methodologies of other disciplines such as Geography, History, Urban and Regional Planning, Engineering, Computer Science, Economics, etc. to provide a comprehensive picture of the issues under investigation. The source materials for this study included extensive use of written literature and oral information. In view of the crucial importance of intra-city commercial transport services, this study demonstrates its role in the overall economic transformation of the study area. It generally also, contributed in opening up a new ground and looked into the history of commercial transport system. At present, Kano Metropolitan area is located between latitude 110 50’ and 12007’, and longitude 80 22’ and 80 47’ within the Semi-Arid Sudan Savannah Zone of West Africa about 840kilometers of the edge of the Sahara desert. The Metropolitan area has expanded over the years and has become the third largest conurbation in Nigeria with a population of about 4million. It is made up of eight local government areas viz: Kano Municipal, Gwale, Dala, Tarauni, Nasarawa, Fage, Ungogo, and Kumbotso.

Keywords: assessment, buses, city, mobility, sustainable

Procedia PDF Downloads 223
242 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones

Authors: Lucas Caldas, Pablo Paulse, Karla Hora

Abstract:

Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.

Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance

Procedia PDF Downloads 174
241 Reuse of Historic Buildings for Tourism: Policy Gaps

Authors: Joseph Falzon, Margaret Nelson

Abstract:

Background: Regeneration and re-use of abandoned historic buildings present a continuous challenge for policy makers and stakeholders in the tourism and leisure industry. Obsolete historic buildings provide great potential for tourism and leisure accommodation, presenting unique heritage experiences to travellers and host communities. Contemporary demands in the hospitality industry continuously require higher standards, some of which are in conflict with heritage conservation principles. Objective: The aim of this research paper is to critically discuss regeneration policies with stakeholders of the tourism and leisure industry and to examine current practices in policy development and the resultant impact of policies on the Maltese tourism and leisure industry. Research Design: Six semi-structured interviews with stakeholders involved in the tourism and leisure industry participated in the research. A number of measures were taken to reduce bias and thus improve trustworthiness. Clear statements of the purpose of the research study were provided at the start of each interview to reduce expectancy bias. The interviews were semi-structured to minimise interviewer bias. Interviewees were allowed to expand and elaborate as necessary, with only necessary probing questions, to allow free expression of opinion and practices. Interview guide was submitted to participants at least two weeks before the interview to allow participants to prepare for the interview and prevent recall bias during the interview as much as possible. Interview questions and probes contained both positive and negative aspects to prevent interviewer bias. Policy documents were available during the interview to prevent recall bias. Interview recordings were transcribed ‘intelligent’ verbatim. Analysis was carried out using thematic analysis with the coding frame developed independently by two researchers. All phases of the study were governed by research ethics. Findings: Findings were grouped in main themes: financing of regeneration, governance, legislation and policies. Other key issues included value of historic buildings and approaches for regeneration. Whist regeneration of historic buildings was noted, participants discussed a number of barriers that hindered regeneration. Stakeholders identified gaps in policies and gaps at policy implementation stages. European Union funding policies facilitated regeneration initiatives but funding criteria based on economic deliverables presented the intangible heritage gap. Stakeholders identified niche markets for heritage tourism accommodation. Lack of research-based policies was also identified. Conclusion: Potential of regeneration is hindered by inadequate legal framework that supports contemporary needs of the tourism industry. Policies should be developed by active stakeholder participation. Adequate funding schemes have to support the tangible and intangible components of the built heritage.

Keywords: governance, historic buildings, policy, tourism

Procedia PDF Downloads 235
240 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 148
239 Foreseen the Future: Human Factors Integration in European Horizon Projects

Authors: José Manuel Palma, Paula Pereira, Margarida Tomás

Abstract:

Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).

Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0

Procedia PDF Downloads 65
238 Sustainability Assessment Tool for the Selection of Optimal Site Remediation Technologies for Contaminated Gasoline Sites

Authors: Connor Dunlop, Bassim Abbassi, Richard G. Zytner

Abstract:

Life cycle assessment (LCA) is a powerful tool established by the International Organization for Standardization (ISO) that can be used to assess the environmental impacts of a product or process from cradle to grave. Many studies utilize the LCA methodology within the site remediation field to compare various decontamination methods, including bioremediation, soil vapor extraction or excavation, and off-site disposal. However, with the authors' best knowledge, limited information is available in the literature on a sustainability tool that could be used to help with the selection of the optimal remediation technology. This tool, based on the LCA methodology, would consider site conditions like environmental, economic, and social impacts. Accordingly, this project was undertaken to develop a tool to assist with the selection of optimal sustainable technology. Developing a proper tool requires a large amount of data. As such, data was collected from previous LCA studies looking at site remediation technologies. This step identified knowledge gaps or limitations within project data. Next, utilizing the data obtained from the literature review and other organizations, an extensive LCA study is being completed following the ISO 14040 requirements. Initial technologies being compared include bioremediation, excavation with off-site disposal, and a no-remediation option for a generic gasoline-contaminated site. To complete the LCA study, the modelling software SimaPro is being utilized. A sensitivity analysis of the LCA results will also be incorporated to evaluate the impact on the overall results. Finally, the economic and social impacts associated with each option will then be reviewed to understand how they fluctuate at different sites. All the results will then be summarized, and an interactive tool using Excel will be developed to help select the best sustainable site remediation technology. Preliminary LCA results show improved sustainability for the decontamination of a gasoline-contaminated site for each technology compared to the no-remediation option. Sensitivity analyses are now being completed on on-site parameters to determine how the environmental impacts fluctuate at other contaminated gasoline locations as the parameters vary, including soil type and transportation distances. Additionally, the social improvements and overall economic costs associated with each technology are being reviewed. Utilizing these results, the sustainability tool created to assist in the selection of the overall best option will be refined.

Keywords: life cycle assessment, site remediation, sustainability tool, contaminated sites

Procedia PDF Downloads 58
237 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 113
236 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 496
235 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 257
234 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 269
233 Techno Commercial Aspects of Using LPG as an Alternative Energy Solution for Transport and Industrial Sector in Bangladesh: Case Studies in Industrial Sector

Authors: Mahadehe Hassan

Abstract:

Transport system and industries which are the main basis of industrial and socio-economic development of any country. It is mainly dependent on fossil fuels. Bangladesh has fossil fuel reserves of 9.51 TCF as of July 2023, and if no new gas fields are discovered in the next 7-9 years and if the existing gas consumption rate continues, the fossil fuel reserves will be exhausted. The demand for petroleum products in Bangladesh is increasing steadily, with 63% imported by BPC and 37% imported by private companies. 61.61% of BPC imported products are used in the transport sector and 5.49% in the industrial sector, which is expensive and harmful to the environment. Liquefied Petroleum Gas (LPG) should be considered as an alternative energy for Bangladesh based on Sustainable Development Goals (SDGs) criteria for sustainable, clean and affordable energy. This will not only lead to the much desired mitigation of energy famine in the country but also contribute favorably to the macroeconomic indicators. Considering the environmental and economic issues, the government has referred to CNG (compressed natural gas) as the fuel carrier since 2000, but currently due to the decline mode of gas reserves, the government of Bangladesh is thinking of new energy sources for transport and industrial sectors which will be sustainable, environmentally friendly and economically viable. Liquefied Petroleum Gas (LPG) is the best choice for fueling transport and industrial sectors in Bangladesh. At present, a total of 1.54 million metric tons of liquefied petroleum gas (LPG) is marketed in Bangladesh by the public and private sectors. 83% of it is used by households, 12% by industry and commerce and 5% by transportation. Industrial and transport sector consumption is negligible compared to household consumption. So the purpose of the research is to find out the challenges of LPG market development in transport and industrial sectors in Bangladesh and make recommendations to reduce the challenges. Secure supply chain, inadequate infrastructure, insufficient investment, lack of government monitoring and consumer awareness in the transport sector and industrial sector are major challenges for LPG market development in Bangladesh. Bangladesh government as well as private owners should come forward in the development of liquefied petroleum gas (LPG) industry to reduce the challenges of secure energy sector for sustainable development. Furthermore, ensuring adequate Liquefied Petroleum Gas (LPG) supply in Bangladesh requires government regulations, infrastructure improvements in port areas, awareness raising and most importantly proper pricing of Liquefied Petroleum Gas (LPG) to address the energy crisis in Bangladesh.

Keywords: transportand industries fuel, LPG consumption, challenges, economical sustainability

Procedia PDF Downloads 83
232 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 127