Search results for: performance and quality
1758 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter
Authors: Evren Isen
Abstract:
In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter
Procedia PDF Downloads 4791757 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers
Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush
Abstract:
Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships
Procedia PDF Downloads 1121756 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies
Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour
Abstract:
The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop
Procedia PDF Downloads 1421755 Management Practices and Economic Performance of Smallholder Dairy Cattle Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
Although dairy production in Vietnam is a relatively new agricultural activity, milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to characterize husbandry practices, educational experiences, decision-making practices, constraints, income and expenses of smallholder dairy farms in Southern Vietnam. A total of 200 farms, located in the regions Ho Chi Minh (HCM, N=80 farms), Lam Dong (N=40 farms), Binh Duong (N=40 farms) and Long An (N=40 farms) were included. Between October 2013 and December 2014 farmers were interviewed twice. On average, farms owned 3.200m2, 2.000m2, and 193m2 of pasture, cropping and housing area, respectively. The number of total, milking and dry cows, heifers, and calves were 20.4, 11.6, 4.7, 3.3, and 2.9 head. The number of lactating dairy cows was higher (p<0.001) in HCM (15.5) and Lam Dong (14.7) than in Binh Duong (6.7) and Long An (10.7). Animals were mainly crossbred Holstein-Friesian (HF) cows with at least 75% HF origin (84%), whereas a higher (P<0.001) percentage of purebred HF was found in HCM and Lam Dong and crossbreds in Binh Duong and Long An. Animals were mainly raised in tie-stalls (94%) and machine-milked (80%). Farmers used their own replacement animals (76%), and both genetic and phenotypic information (67%) for selecting sires. Farmers were predominantly educated at primary school level (53%). Major constraints for dairy farming were the lack of capital (43%), diseases (17%), marketing (22%), lack of knowledge (8%) and feed (7%). Monthly profit per lactating cow was superior in Lam Dong (2,817 thousand VND) and HCM (2,798 thousand VND) compared to other regions in Long An (2,597 thousand VND), and Binh Duong (1,775 thousand VND). Regional differences may be mainly attributed to environmental factors, urbanization, and particularly governmental support and the availability of extension and financial institutions. Results from this study provide important information on farming practices of smallholders in Southern Vietnam that are useful in determining regions that need to be addressed by authorities in order to improve dairy production.Keywords: dairy farms, milk yield, Southern Vietnam, socio-economics
Procedia PDF Downloads 4661754 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 2871753 Study on Control Techniques for Adaptive Impact Mitigation
Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty
Abstract:
Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber
Procedia PDF Downloads 921752 A Case Study Demonstrating the Benefits of Low-Carb Eating in an Adult with Latent Autoimmune Diabetes Highlights the Necessity and Effectiveness of These Dietary Therapies
Authors: Jasmeet Kaur, Anup Singh, Shashikant Iyengar, Arun Kumar, Ira Sahay
Abstract:
Latent autoimmune diabetes in adults (LADA) is an irreversible autoimmune disease that affects insulin production. LADA is characterized by the production of Glutamic acid decarboxylase (GAD) antibodies, which is similar to type 1 diabetes. Individuals with LADA may eventually develop overt diabetes and require insulin. In this condition, the pancreas produces little or no insulin, which is a hormone used by the body to allow glucose to enter cells and produce energy. While type 1 diabetes was traditionally associated with children and teenagers, its prevalence has increased in adults as well. LADA is frequently misdiagnosed as type 2 diabetes, especially in adulthood when type 2 diabetes is more common. LADA develops in adulthood, usually after age 30. Managing LADA involves metabolic control with exogenous insulin and prolonging the life of surviving beta cells, thereby slowing the disease's progression. This case study examines the impact of approximately 3 months of low-carbohydrate dietary intervention in a 42-year-old woman with LADA who was initially misdiagnosed as having type 2 diabetes. Her c-peptide was 0.13 and her HbA1c was 9.3% when this trial began. Low-carbohydrate interventions have been shown to improve blood sugar levels, including fasting, post-meal, and random blood sugar levels, as well as haemoglobin levels, blood pressure, energy levels, sleep quality, and satiety levels. The use of low-carbohydrate dietary intervention significantly reduces both hypo- and hyperglycaemia events. During the 3 months of the study, there were 2 to 3 hyperglycaemic events owing to physical stress and a single hypoglycaemic event. Low-carbohydrate dietary therapies lessen insulin dose inaccuracy, which explains why there were fewer hyperglycaemic and hypoglycaemic events. In three months, the glycated haemoglobin (HbA1c) level was reduced from 9.3% to 6.3%. These improvements occur without the need for caloric restriction or physical activity. Stress management was crucial aspect of the treatment plan as stress-induced neuroendocrine hormones can cause immunological dysregulation. Additionally, supplements that support immune system and reduce inflammation were used as part of the treatment during the trial. Long-term studies are needed to track disease development and corroborate the claim that such dietary treatments can prolong the honeymoon phase in LADA. Various factors can contribute to additional autoimmune attacks, so measuring c-peptide is crucial on a regular basis to determine whether insulin levels need to be adjusted.Keywords: autoimmune, diabetes, LADA, low_carb, nutrition
Procedia PDF Downloads 461751 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations
Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh
Abstract:
Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy
Procedia PDF Downloads 981750 Biosensor: An Approach towards Sustainable Environment
Authors: Purnima Dhall, Rita Kumar
Abstract:
Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna
Procedia PDF Downloads 2791749 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 2981748 The Harmonious Blend of Digitalization and 3D Printing: Advancing Aerospace Jet Pump Development
Authors: Subrata Sarkar
Abstract:
The aerospace industry is experiencing a profound product development transformation driven by the powerful integration of digitalization and 3D printing technologies. This paper delves into the significant impact of this convergence on aerospace innovation, specifically focusing on developing jet pumps for fuel systems. This case study is a compelling example of the immense potential of these technologies. In response to the industry's increasing demand for lighter, more efficient, and customized components, the combined capabilities of digitalization and 3D printing are reshaping how we envision, design, and manufacture critical aircraft parts, offering a distinct paradigm in aerospace engineering. Consider the development of a jet pump for a fuel system, a task that presents unique and complex challenges. Despite its seemingly simple design, the jet pump's development is hindered by many demanding operating conditions. The qualification process for these pumps involves many analyses and tests, leading to substantial delays and increased costs in fuel system development. However, by harnessing the power of automated simulations and integrating legacy design, manufacturing, and test data through digitalization, we can optimize the jet pump's design and performance, thereby revolutionizing product development. Furthermore, 3D printing's ability to create intricate structures using various materials, from lightweight polymers to high-strength alloys, holds the promise of highly efficient and durable jet pumps. The combined impact of digitalization and 3D printing extends beyond design, as it also reduces material waste and advances sustainability goals, aligning with the industry's increasing commitment to environmental responsibility. In conclusion, the convergence of digitalization and 3D printing is not just a technological advancement but a gateway to a new era in aerospace product development, particularly in the design of jet pumps. This revolution promises to redefine how we create aerospace components, making them safer, more efficient, and environmentally responsible. As we stand at the forefront of this technological revolution, aerospace companies must embrace these technologies as a choice and a strategic imperative for those striving to lead in innovation and sustainability in the 21st century.Keywords: jet pump, digitalization, 3D printing, aircraft fuel system.
Procedia PDF Downloads 571747 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 3741746 Phylogenetic Analysis of Georgian Populations of Potato Cyst Nematodes Globodera Rostochiensis
Authors: Dali Gaganidze, Ekaterine Abashidze
Abstract:
Potato is one of the main agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. In traditional potato growing regions (Svaneti, Samckhet javaheti and Tsalka), the yield is higher than 30-35 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (PCN) are harmful around the world. Yield losses caused by PCN are estimated up to 30%. Rout surveys conducted in two geographically distinct regions of Georgia producing potatoes - Samtskhe - Javakheti and Svaneti revealed potato cyst nematode Globodera rostochiensi. The aim of the study was the Phylogenetic analyses of Globodera rostochiensi revealed in Georgia by the amplification and sequencing of 28S gen in the D3 region and intergenic ITS1-15.8S-ITS2 region. Identification of all the samples from the two Globodera populations (Samtskhe - Javakheti and Svaneti), i.e., G. rostochiensis (20 isolates) were confirmed by conventional multiplex PCR with ITS 5 universal and PITSp4, PITSr3 specific primers of the cyst nematodes’ (G. pallida, G. rostochiensis). The size of PCR fragment 434 bp confirms that PCN samples from two populations, Samtskhe- Javakheti and Svaneti, belong to G. rostochiensi . The ITS1–5.8S-ITS2 regions were amplified using prime pairs: rDNA1 ( 5’ -TTGATTACGTCCCTGCCCTTT-3’ and rDNA2( 5’ TTTCACTCGCCGTTACTAAGG-3’), D3 expansion regions were amplified using primer pairs: D3A (5’ GACCCCTCTTGAAACACGGA-3’) and D3B (5’-TCGGAAGGAACCAGCTACTA-3’. PCR products of each region were cleaned up and sequenced using an ABI 3500xL Genetic Analyzer. Obtained sequencing results were analyzed by computer program BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cg). Phylogenetic analyses to resolve the relationships between the isolates were conducted in MEGA7 using both distance- and character-based methods. Based on analysis of G.rostochiensis isolate`s D3 expansion regions are grouped in three major clades (A, B and C) on the phylogenetic tree. Clade A is divided into three subclades; clade C is divided into two subclades. Isolates from the Samtckhet-javakheti population are in subclade 1 of clade A and isolates in subclade 1 of clade C. Isolates) from Svaneti populations are in subclade 2 of clade A and in clad B. In Clade C, subclade two is presented by three isolates from Svaneti and by one isolate (GL17) from Samckhet-Javakheti. . Based on analysis of G.rostochiensis isolate`s ITS1–5.8S-ITS2 regions are grouped in two main clades, the first contained 20 Georgian isolates of Globodera rostochiensis from Svaneti . The second clade contained 15 isolates of Globodera rostochiensis from Samckhet javakheti. Our investigation showed of high genetic variation of D3 and ITS1–5.8S-ITS2 region of rDNA of the isolates of G. rostochiensis from different geographic origins (Svameti, Samckhet-Javakheti) of Georgia. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia : Project # FR17_235Keywords: globodera rostochiensi, PCR, phylogenetic tree, sequencing
Procedia PDF Downloads 1971745 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell
Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang
Abstract:
Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers
Procedia PDF Downloads 4561744 Study of Porous Metallic Support for Intermediate-Temperature Solid Oxide Fuel Cells
Authors: S. Belakry, D. Fasquelle, A. Rolle, E. Capoen, R. N. Vannier, J. C. Carru
Abstract:
Solid oxide fuel cells (SOFCs) are promising devices for energy conversion due to their high electrical efficiency and eco-friendly behavior. Their performance is not only influenced by the microstructural and electrical properties of the electrodes and electrolyte but also depends on the interactions at the interfaces. Nowadays, commercial SOFCs are electrically efficient at high operating temperatures, typically between 800 and 1000 °C, which restricts their real-life applications. The present work deals with the objectives to reduce the operating temperature and to develop cost-effective intermediate-temperature solid oxide fuel cells (IT-SOFCs). This work focuses on the development of metal-supported solid oxide fuel cells (MS-IT-SOFCs) that would provide cheaper SOFC cells with increased lifetime and reduced operating temperature. In the framework, the local company TIBTECH brings its skills for the manufacturing of porous metal supports. This part of the work focuses on the physical, chemical, and electrical characterizations of porous metallic supports (stainless steel 316 L and FeCrAl alloy) under different exposure conditions of temperature and atmosphere by studying oxidation, mechanical resistance, and electrical conductivity of the materials. Within the target operating temperature (i.e., 500 to 700 ° C), the stainless steel 316 L and FeCrAl alloy slightly oxidize in the air and H2, but don’t deform; whereas under Ar atmosphere, they oxidize more than with previously mentioned atmospheres. Above 700 °C under air and Ar, the two metallic supports undergo high oxidation. From 500 to 700 °C, the resistivity of FeCrAl increases by 55%. But nevertheless, the FeCrAl resistivity increases more slowly than the stainless steel 316L resistivity. This study allows us to verify the compatibility of electrodes and electrolyte materials with metallic support at the operating requirements of the IT-SOFC cell. The characterizations made in this context will also allow us to choose the most suitable fabrication process for all functional layers in order to limit the oxidation of the metallic supports.Keywords: stainless steel 316L, FeCrAl alloy, solid oxide fuel cells, porous metallic support
Procedia PDF Downloads 971743 Efficiently Degradation of Perfluorooctanoic Acid, an Emerging Contaminant, by a Hybrid Process of Membrane Distillation Process and Electro-Fenton
Authors: Afrouz Yousefi, Mohtada Sadrzadeh
Abstract:
The widespread presence of poly- and perfluoroalkyl substances (PFAS) poses a significant concern due to their ability to accumulate in living organisms and their persistence in the environment, thanks to their robust carbon-fluorine (C-F) bonds, which require substantial energy to break (485 kJ/mol). The prevalence of toxic PFAS compounds can be highly detrimental to ecosystems, wildlife, and human health. Ongoing efforts are dedicated to investigating methods for fully breaking down and eliminating PFAS from the environment. Among the various techniques employed, advanced oxidation processes have shown promise in completely breaking down emerging contaminants in wastewater. However, the drawback lies in the relatively slow reaction rates of these processes and the substantial energy input required, which currently impedes their widespread commercial adoption. We developed a hybrid process, comprising electro-Fenton as an advanced oxidation process and membrane distillation, to simultaneously degrade organic PFAS pollutants and extract pure water from the mixture. In this study, environmentally persistent perfluorooctanoic acid (PFOA), as an emerging contaminant, was used to study the effectiveness of the electro-Fenton/membrane distillation hybrid system. The PFOA degradation studies were conducted in two modes: electro-Fenton and electro-Fenton coupled with membrane distillation. High-performance liquid chromatography with ultraviolet detection (HPLC-UV), ion-chromatography (measuring fluoride ion concentration), total organic carbon (TOC) decay, mineralization current efficiency (MCE), and specific energy consumption (SEC) were evaluated for a single EF and hybrid EF-MD processes. In contrast to a single EF reaction, TOC decay improved significantly in the EF-MD process. Overall, the MCE of hybrid processes surpassed 100% while it remained under 50% for a single EF reaction. Calculations of specific energy consumption (SEC) demonstrated a substantial decrease of nearly one-third in energy usage when integrating the EF reaction with the MD process.Keywords: water treatment, PFAS, membrane distillation, electro-Fenton, advanced oxidation
Procedia PDF Downloads 671742 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method
Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter
Abstract:
This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.Keywords: aging, eye tracking, implicit learning, visual statistical learning
Procedia PDF Downloads 791741 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures
Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim
Abstract:
Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate
Procedia PDF Downloads 1241740 Extra Skin Removal Surgery and Its Effects: A Comprehensive Review
Authors: Rebin Mzhda Mohammed, Hoshmand Ali Hama Agha
Abstract:
Excess skin, often consequential to substantial weight loss or the aging process, introduces physical discomfort, obstructs daily activities, and undermines an individual's self-esteem. As these challenges become increasingly prevalent, the need to explore viable solutions grows in significance. Extra skin removal surgery, colloquially known as body contouring surgery, has emerged as a compelling intervention to ameliorate the physical and psychological burdens of excess skin. This study undertakes a comprehensive review to illuminate the intricacies of extra skin removal surgery, encompassing its diverse procedures, associated risks, benefits, and psychological implications on patients. The methodological approach adopted involves a systematic and exhaustive review of pertinent scholarly literature sourced from reputable databases, including PubMed, Google Scholar, and specialized cosmetic surgery journals. Articles are meticulously curated based on their relevance, credibility, and recency. Subsequently, data from these sources are synthesized and categorized, facilitating a comprehensive understanding of the subject matter. Qualitative analysis serves to unravel the nuanced psychological effects, while quantitative data, where available, are harnessed to underpin the study's conclusions. In terms of major findings, the research underscores the manifold advantages of extra skin removal surgery. Patients experience a notable improvement in physical comfort, amplified mobility, enhanced self-confidence, and a newfound ability to don clothing comfortably. Nonetheless, the benefits are juxtaposed with potential risks, encompassing infection, scarring, hematoma, delayed healing, and the challenge of achieving symmetry. A salient discovery is the profound psychological impact of the surgery, as patients consistently report elevated body image satisfaction, heightened self-esteem, and a substantial enhancement in overall quality of life. In summation, this research accentuates the pivotal role of extra skin removal surgery in ameliorating the intricate interplay of physical and psychological difficulties posed by excess skin. By elucidating the diverse procedures, associated risks, and psychological outcomes, the study contributes to a comprehensive and informed comprehension of the surgery's multifaceted effects. Therefore, individuals contemplating this transformative surgical option are equipped with comprehensive insights, ultimately fostering informed decision-making, guided by the expertise of medical professionals.Keywords: extra skin removal surgery, body contouring, abdominoplasty, brachioplasty, thigh lift, body lift, benefits, risks, psychological effects
Procedia PDF Downloads 671739 Improving Teaching in English-Medium Instruction Classes at Japanese Universities through Needs-Based Professional Development Workshops
Authors: Todd Enslen
Abstract:
In order to attract more international students to study for undergraduate degrees in Japan, many universities have been developing English-Medium Instruction degree programs. This means that many faculty members must now teach their courses in English, which raises a number of concerns. A common misconception of English-Medium Instruction (EMI) is that teaching in English is simply a matter of translating materials. Since much of the teaching in Japan still relies on a more traditional, teachercentered, approach, continuing with this style in an EMI environment that targets international students can cause a clash between what is happening and what students expect in the classroom, not to mention what the Scholarship of Teaching and Learning (SoTL) has shown is effective teaching. A variety of considerations need to be taken into account in EMI classrooms such as varying English abilities of the students, modifying input material, and assuring comprehension through interactional checks. This paper analyzes the effectiveness of the English-Medium Instruction (EMI) undergraduate degree programs in engineering, agriculture, and science at a large research university in Japan by presenting the results from student surveys regarding the areas where perceived improvements need to be made. The students were the most dissatisfied with communication with their teachers in English, communication with Japanese students in English, adherence to only English being used in the classes, and the quality of the education they received. In addition, the results of a needs analysis survey of Japanese teachers having to teach in English showed that they believed they were most in need of English vocabulary and expressions to use in the classroom and teaching methods for teaching in English. The result from the student survey and the faculty survey show similar concerns between the two groups. By helping the teachers to understand student-centered teaching and the benefits for learning that it provides, teachers may begin to incorporate more student-centered approaches that in turn help to alleviate the dissatisfaction students are currently experiencing. Through analyzing the current environment in Japanese higher education against established best practices in teaching and EMI, three areas that need to be addressed in professional development workshops were identified. These were “culture” as it relates to the English language, “classroom management techniques” and ways to incorporate them into classes, and “language” issues. Materials used to help faculty better understand best practices as they relate to these specific areas will be provided to help practitioners begin the process of helping EMI faculty build awareness of better teaching practices. Finally, the results from faculty development workshops participants’ surveys will show the impact that these workshops can have. Almost all of the participants indicated that they learned something new and would like to incorporate the ideas from the workshop into their teaching. In addition, the vast majority of the participants felt the workshop provided them with new information, and they would like more workshops like these.Keywords: English-medium instruction, materials development, professional development, teaching effectiveness
Procedia PDF Downloads 891738 Testing Serum Proteome between Elite Sprinters and Long-Distance Runners
Authors: Hung-Chieh Chen, Kuo-Hui Wang, Tsu-Lin Yeh
Abstract:
Proteomics represent the performance of genomic complement proteins and the protein level on functional genomics. This study adopted proteomic strategies for comparing serum proteins among three groups: elite sprinter (sprint runner group, SR), long-distance runners (long-distance runner group, LDR), and the untrained control group (control group, CON). Purposes: This study aims to identify elite sprinters and long-distance runners’ serum protein and to provide a comparison of their serum proteome’ composition. Methods: Serum protein fractionations that separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by a quantitative nano-LC-MS/MS-based proteomic profiling. The one-way analysis of variance (ANOVA) and Scheffe post hoc comparison (α= 0.05) was used to determine whether there is any significant difference in each protein level among the three groups. Results: (1) After analyzing the 307 identified proteins, there were 26 unique proteins in the SR group, and 18 unique proteins in the LDR group. (2) For the LDR group, 7 coagulation function-associated proteins’ expression levels were investigated: vitronectin, serum paraoxonase/arylesterase 1, fibulin-1, complement C3, vitamin K-dependent protein, inter-alpha-trypsin inhibitor heavy chain H3 and von Willebrand factor, and the findings show the seven coagulation function-associated proteins were significantly lower than the group of SR. (3) Comparing to the group of SR, this study found that the LDR group’s expression levels of the 2 antioxidant proteins (afamin and glutathione peroxidase 3) were also significantly lower. (4) The LDR group’s expression levels of seven immune function-related proteins (Ig gamma-3 chain C region, Ig lambda-like polypeptide 5, clusterin, complement C1s subcomponent, complement factor B, complement C4-A, complement C1q subcomponent subunit A) were also significantly lower than the group of SR. Conclusion: This study identified the potential serum protein markers for elite sprinters and long-distance runners. The changes in the regulation of coagulation, antioxidant, or immune function-specific proteins may also provide further clinical applications for these two different track athletes.Keywords: biomarkers, coagulation, immune response, oxidative stress
Procedia PDF Downloads 1181737 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic
Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx
Abstract:
Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM
Procedia PDF Downloads 2071736 Baricitinib Lipid-based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment
Authors: N. Garrós, P. Bustos, N. Beirampour, R. Mohammadi, M. Mallandrich, A.C. Calpena, H. Colom
Abstract:
Atopic dermatitis (AD) is a persistent skin condition characterized by chronic inflammation caused by an autoimmune response. It is a prevalent clinical issue that requires continual treatment to enhance the patient's quality of life. Systemic therapy often involves the use of glucocorticoids or immunosuppressants to manage symptoms. Our objective was to create and assess topical liposomal formulations containing Baricitinib (BNB), a reversible inhibitor of Janus-associated kinase (JAK), which is involved in various immune responses. These formulations were intended to address flare-ups and improve treatment outcomes for AD. We created three distinct liposomal formulations by combining different amounts of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), cholesterol (CHOL), and ceramide (CER): (i) pure POPC, (ii) POPC mixed with CHOL (at a ratio of 8:2, mol/mol), and (iii) POPC mixed with CHOL and CER (at a ratio of 3.6:2.4:4.0 mol/mol/mol). We conducted various tests to determine the formulations' skin tolerance, irritancy capacity, and their ability to cause erythema and edema on altered skin. We also assessed the transepidermal water loss (TEWL) and skin hydration of rabbits to evaluate the efficacy of the formulations. Histological analysis, the HET-CAM test, and the modified Draize test were all used in the evaluation process. The histological analysis revealed that liposome POPC and POPC:CHOL avoided any damage to the tissues structures. The HET-CAM test showed no irritation effect caused by any of the three liposomes, and the modified Draize test showed a good Draize score for erythema and edema. Liposome POPC effectively counteracted the impact of xylol on the skin, and no erythema or edema was observed during the study. TEWL values were constant for all the liposomes with similar values to the negative control (within the range 8 - 15 g/h·m2, which means a healthy value for rabbits), whereas the positive control showed a significant increase. The skin hydration values were constant and followed the trend of the negative control, while the positive control showed a steady increase during the tolerance study. In conclusion, the developed formulations containing BNB exhibited no harmful or irritating effects, they did not demonstrate any irritant potential in the HET-CAM test and liposomes POPC and POPC:CHOL did not cause any structural alteration according to the histological analysis. These positive findings suggest that additional research is necessary to evaluate the efficacy of these liposomal formulations in animal models of the disease, including mutant animals. Furthermore, before proceeding to clinical trials, biochemical investigations should be conducted to better understand the mechanisms of action involved in these formulations.Keywords: baricitinib, HET-CAM test, histological study, JAK inhibitor, liposomes, modified draize test
Procedia PDF Downloads 931735 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites
Authors: A. Kavita Murugkar, B. Anurag Kashyap
Abstract:
With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience
Procedia PDF Downloads 1071734 Hypolipidemic and Antioxidant Effects of Mycelial Polysaccharides from Calocybe indica in Hyperlipidemic Rats Induced by High-Fat Diet
Authors: Govindan Sudha, Mathumitha Subramaniam, Alamelu Govindasamy, Sasikala Gunasekaran
Abstract:
The aim of this study was to investigate the protective effect of Hypsizygus ulmarius polysaccharides (HUP) on reducing oxidative stress, cognitive impairment and neurotoxicity in D-galactose induced aging mice. Mice were subcutaneously injected with D-galactose (150 mg/kg per day) for 6 weeks and were administered HUP simultaneously. Aged mice receiving vitamin E (100 mg/kg) served as positive control. Chronic administration of D-galactose significantly impaired cognitive performance oxidative defence and mitochondrial enzymes activities as compared to control group. The results showed that HUP (200 and 400 mg/kg) treatment significantly improved the learning and memory ability in Morris water maze test. Biochemical examination revealed that HUP significantly increased the decreased activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), mitochondrial enzymes-NADH dehydrogenase, malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), Na+K+, Ca2+, Mg2+ATPase activities, elevated the lowered total anti-oxidation capability (TAOC), glutathione (GSH), vitamin C and decreased the raised acetylcholinesterase (AChE) activities, malondialdehyde (MDA), hydroperoxide (HPO), protein carbonyls (PCO), advanced oxidation protein products (AOPP) levels in brain of aging mice induced by D-gal in a dose-dependent manner. In conclusion, present study highlights the potential role of HUP against D-galactose induced cognitive impairment, biochemical and mitochondrial dysfunction in mice. In vitro studies on the effect of HUP on scavenging DPPH, ABTS, DMPD, OH radicals, reducing power, B-carotene bleaching and lipid peroxidation inhibition confirmed the free radical scavenging and antioxidant activity of HUP. The results suggest that HUP possesses anti-aging efficacy and may have potential in treatment of neurodegenerative diseases.Keywords: aging, antioxidants, mushroom, neurotoxicity
Procedia PDF Downloads 5311733 “A Watched Pot Never Boils.” Exploring the Impact of Job Autonomy on Organizational Commitment among New Employees: A Comprehensive Study of How Empowerment and Independence Influence Workplace Loyalty and Engagement in Early Career Stages
Authors: Atnafu Ashenef Wondim
Abstract:
In today’s highly competitive business environment, employees are considered a source of competitive advantage. Researchers have looked into job autonomy's effect on organizational commitment and declared superior organizational performance strongly depends on the effort and commitment of employees. The purpose of this study was to explore the relationship between job autonomy and organizational commitment from newcomer’s point of view. The mediation role of employee engagement (physical, emotional, and cognitive) was also examined in the case of Ethiopian Commercial Banks. An exploratory survey research design with mixed-method approach that included partial least squares structural equation modeling and Fuzzy-Set Qualitative Comparative Analysis technique were using to address the sample size of 348 new employees. In-depth interviews with purposive and convenientsampling techniques are conducted with new employees (n=43). The results confirmed that job autonomy had positive, significant direct effects on physical engagement, emotional engagement, and cognitive engagement (path coeffs. = 0.874, 0.931, and 0.893).The results showed thatthe employee engagement driver, physical engagement, had a positive significant influence on affective commitment (path coeff. = 0.187) and normative commitment (path coeff. = 0.512) but no significant effect on continuance commitment. Employee engagement partially mediates the relationship between job autonomy and organizational commitment, which means supporting the indirect effects of job autonomy on affective, continuance, and normative commitment through physical engagement. The findings of this study add new perspectives by positioning it within a complex organizational African setting and by expanding the job autonomy and organizational commitment literature, which will benefit future research. Much of the literature on job autonomy and organizational commitment has been conducted within a well-established organizational business context in Western developed countries.The findings lead to fresh information on job autonomy and organizational commitment implementation enablers that can assist in the formulation of a better policy/strategy to efficiently adopt job autonomy and organizational commitment.Keywords: employee engagement, job autonomy, organizational commitment, social exchange theory
Procedia PDF Downloads 341732 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity
Procedia PDF Downloads 2861731 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions
Authors: Ozan Kahraman, Hao Feng
Abstract:
Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization
Procedia PDF Downloads 1801730 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 3501729 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations
Authors: Yanjie Zhu, André Jesus, Irwanda Laory
Abstract:
Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)
Procedia PDF Downloads 307