Search results for: light detection and ranging
6433 Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement
Authors: M. F. Perez, Ysmael Verde, B. Escobar, R. Barbosa, J. C. Cruz
Abstract:
Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating.Keywords: anticorrosive, carbon nanotubes, corrosion, steel
Procedia PDF Downloads 4806432 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array
Authors: P. Behera, K. K. Singh, D. K. Saini, M. De
Abstract:
Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂
Procedia PDF Downloads 1466431 Trademarks and Non-Fungible Tokens: New Frontiers for Trademark Law
Authors: Dima Basma
Abstract:
The unprecedented expansion in the use of Non-Fungible Tokens (NFTS) has prompted luxury brand owners to file their trademark applications for the use of their marks in the metaverse world. While NFTs provide a favorable tool for product traceability and anti-counterfeiting endeavors, the legal ramifications of such abrupt shift are complex, diverse, and yet to be understood. Practically, a sizable number of NFT creators are minting digital tokens associated with existing trademarks, selling them at strikingly high rates, thus disadvantaging trademark owners who joined and are yet to join the meta-verse world. As a result, multiple luxury brands are filing confusion and dilution lawsuits against alleged artists offering for sale NFTs depicting reputable marks labeling their use as “parody” and “social commentary.” Given the already muddled state of trademark law in relation to both traditional and modern infringement criteria, this paper aims to explore the feasibility of the current system in dealing with the emerging NFT trends. The paper firstly delves into the intersection between trademarks and NFTs. Furthermore, in light of the striking increase in NFT use, the paper sheds critical light on the shortcoming of the current system. Finally, the paper provides recommendations for overcoming current and prospective challenges in this area.Keywords: trademarks, NFTs, dilution, social commentary
Procedia PDF Downloads 1186430 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 926429 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka
Authors: Sakshi Dhumale, Madhushree C., Amba Shetty
Abstract:
The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability
Procedia PDF Downloads 666428 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 1436427 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2116426 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1246425 Non-Parametric Changepoint Approximation for Road Devices
Authors: Loïc Warscotte, Jehan Boreux
Abstract:
The scientific literature of changepoint detection is vast. Today, a lot of methods are available to detect abrupt changes or slight drift in a signal, based on CUSUM or EWMA charts, for example. However, these methods rely on strong assumptions, such as the stationarity of the stochastic underlying process, or even the independence and Gaussian distributed noise at each time. Recently, the breakthrough research on locally stationary processes widens the class of studied stochastic processes with almost no assumptions on the signals and the nature of the changepoint. Despite the accurate description of the mathematical aspects, this methodology quickly suffers from impractical time and space complexity concerning the signals with high-rate data collection, if the characteristics of the process are completely unknown. In this paper, we then addressed the problem of making this theory usable to our purpose, which is monitoring a high-speed weigh-in-motion system (HS-WIM) towards direct enforcement without supervision. To this end, we first compute bounded approximations of the initial detection theory. Secondly, these approximating bounds are empirically validated by generating many independent long-run stochastic processes. The abrupt changes and the drift are both tested. Finally, this relaxed methodology is tested on real signals coming from a HS-WIM device in Belgium, collected over several months.Keywords: changepoint, weigh-in-motion, process, non-parametric
Procedia PDF Downloads 826424 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3826423 A CMOS D-Band Power Amplifier in 22FDSOI Technology for 6G Applications
Authors: Karandeep Kaur
Abstract:
This paper presents the design of power amplifier (PA) for mmWave communication systems. The designed amplifier uses GlobalFoundries 22 FDX technology and works at an operational frequency of 140 GHz in the D-Band. With a supply voltage of 0.8V for the super low threshold voltage transistors, the amplifier is biased in class AB and has a total current consumption of 50 mA. The measured saturated output power from the power amplifier is 5.6 dBm with an output-referred 1dB-compression point of 1.6dBm. The measured gain of PA is 19 dB with 3 dB-bandwidth ranging from 120 GHz to 140 GHz. The chip occupies an area of 795µm × 410µm.Keywords: mmWave communication system, power amplifiers, 22FDX, D-Band, cross-coupled capacitive neutralization
Procedia PDF Downloads 1676422 The Significance of Community Life in Promoting Unity in the Light of Acts 2:42
Authors: Takesure Mahohoma
Abstract:
Community life is an epitome of the African axiom 'I am because we are, since we are therefore I am.' This culminates in the Ubuntu philosophy which is summarized in the Zulu words, 'umuntu ngumuntu ngabantu' (A person is a person through other people). This relationship gives honour to all people. This is the gist of the paper. This paper seeks to demonstrate the impact of community life in promoting unity from an African perspective. Using the proto-community in Acts 2:42, it is argued that community life is a solution to many social problems that divide African society today. The aim is to encourage all Africans and other people to cultivate a sense of belonging and valuing community life in the light of Acts 2:42. Hence we shall trace this theme from Old Testament, New Testament, and Christian history. The other section touches on the essence of community life and obstacles that hinder it. We shall offer spiritual suggestions and an integrative reflection. The nature of the paper is theology in general but spiritual in particular. As a spiritual paper, it is guided by the foundational approach. Thus, it employs the dialogical and integrative reflection method. The expected result is that freedom from all the miseries experienced is brought by living a community life. This is a life that gives greater assurance of enough food, education, health, peace, employment, and increased responsibility that values human dignity. Thus people are neighbours to each other. There is no stranger among them. The basic presumption is that there can be no development in any society without community life.Keywords: community, seged, koinonia, neighbor
Procedia PDF Downloads 2926421 Sports Activities and their Impact on Disability
Authors: Ajved Ahmed
Abstract:
This research paper explores the intricate relationship between sports activities and disability, aiming to shed light on the multifaceted impacts of sports participation on individuals with disabilities. As the world grapples with the challenges posed by the growing population of people with disabilities, understanding the role of sports in their lives becomes increasingly important. The paper begins by providing a comprehensive overview of the diverse forms of disabilities, emphasizing the wide spectrum of physical, sensory, and cognitive impairments. It then delves into the benefits of sports activities for individuals with disabilities, highlighting the profound physical, psychological, and social advantages that engagement in sports can offer. These benefits encompass improved physical fitness, enhanced self-esteem and mental well-being, increased social integration, and a sense of empowerment and independence. Furthermore, the paper examines the barriers and challenges that individuals with disabilities often encounter when attempting to participate in sports activities, ranging from inaccessible facilities to societal prejudices and stereotypes. It underscores the critical role of inclusive sports programs, adaptive equipment, and policy initiatives in overcoming these barriers and fostering an environment where everyone can enjoy the benefits of sports. Through a comprehensive review of existing research and case studies, the paper also explores specific sports and their suitability for various types of disabilities. It discusses adapted sports like wheelchair basketball, blind soccer, and para-swimming, showcasing how these tailored activities not only accommodate disabilities but also promote excellence and competition at the highest levels. Additionally, the research paper delves into the economic and societal implications of increased sports participation among individuals with disabilities. It explores the potential for greater inclusion in the workforce, reduced healthcare costs, and the fostering of a more inclusive and accepting society. This research paper underscores the profound impact of sports activities on individuals with disabilities, highlighting their potential to improve physical health, mental well-being, and social integration. It calls for continued efforts to break down barriers and promote inclusive sports programs to ensure that everyone, regardless of their abilities, can access the transformative power of sports. Ultimately, this study contributes to a broader understanding of disability and sports, emphasizing the importance of inclusivity and accessibility in creating a more equitable and healthier society.Keywords: sports and health, sports and disability, curing disability through sports, health benefits of sports
Procedia PDF Downloads 656420 Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury
Authors: Guy Rubin, Ravit Shay, Nimrod Rozen
Abstract:
The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery.Keywords: digital nerve, injury, nerve examination, Semmes-Weinstein monofilamen, sensitivity, specificity, two point discrimination, wrinkle test
Procedia PDF Downloads 3466419 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain
Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani
Abstract:
INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.Keywords: neuropathic pain, chronic pain, treatment, gabapentin
Procedia PDF Downloads 966418 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 796417 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics
Procedia PDF Downloads 2256416 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow
Authors: Mahtab Makaremi Masouleh, Günter Wozniak
Abstract:
This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model
Procedia PDF Downloads 1876415 Photodetector Engineering with Plasmonic Properties
Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim
Abstract:
In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.Keywords: plasmonic photodetector, plasmon-plasmon interaction, Gold nanoparticle, electrical properties
Procedia PDF Downloads 1426414 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 706413 Greenland Monitoring Using Vegetation Index: A Case Study of Lal Suhanra National Park
Authors: Rabia Munsaf Khan, Eshrat Fatima
Abstract:
The analysis of the spatial extent and temporal change of vegetation cover using remotely sensed data is of critical importance to agricultural sciences. Pakistan, being an agricultural country depends on this resource as it makes 70% of the GDP. The case study is of Lal Suhanra National Park, which is not only the biggest forest reserve of Pakistan but also of Asia. The study is performed using different temporal images of Landsat. Also, the results of Landsat are cross-checked by using Sentinel-2 imagery as it has both higher spectral and spatial resolution. Vegetation can easily be detected using NDVI which is a common and widely used index. It is an important vegetation index, widely applied in research on global environmental and climatic change. The images are then classified to observe the change occurred over 15 years. Vegetation cover maps of 2000 and 2016 are used to generate the map of vegetation change detection for the respective years and to find out the changing pattern of vegetation cover. Also, the NDVI values aided in the detection of percentage decrease in vegetation cover. The study reveals that vegetation cover of the area has decreased significantly during the year 2000 and 2016.Keywords: Landsat, normalized difference vegetation index (NDVI), sentinel 2, Greenland monitoring
Procedia PDF Downloads 3126412 Molecular Detection and Characterization of Infectious Bronchitis Virus from Libya
Authors: Abdulwahab Kammon, Tan Sheau Wei, Abdul Rahman Omar, Abdunaser Dayhum, Ibrahim Eldghayes, Monier Sharif
Abstract:
Infectious bronchitis virus (IBV) is a very dynamic and evolving virus which causing major economic losses to the global poultry industry. Recently, the Libyan poultry industry faced severe outbreak of respiratory distress associated with high mortality and dramatic drop in egg production. Tracheal and cloacal swabs were analyzed for several poultry viruses. IBV was detected using SYBR Green I real-time PCR detection based on the nucleocapsid (N) gene. Sequence analysis of the partial N gene indicated high similarity (~ 94%) to IBV strain 3382/06 that was isolated from Taiwan. Even though the IBV strain 3382/06 is more similar to that of the Mass type H120, the isolate has been implicated associated with intertypic recombinant of 3 putative parental IBV strains namely H120, Taiwan strain 1171/92 and China strain CK/CH/LDL/97I. Complete sequencing and antigenicity studies of the Libya IBV strains are currently underway to determine the evolution of the virus and its importance in vaccine induced immunity. In this paper, we documented for the first time the presence of possibly variant IBV strain from Libya which required a dramatic change in the vaccination program.Keywords: Libya, infectious bronchitis, molecular characterization, viruses, vaccine
Procedia PDF Downloads 4736411 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method
Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara
Abstract:
Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent
Procedia PDF Downloads 4746410 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM
Procedia PDF Downloads 1196409 Diagnosis of Rotavirus Infection among Egyptian Children by Using Different Laboratory Techniques
Authors: Mohamed A. Alhammad, Hadia A. Abou-Donia, Mona H. Hashish, Mohamed N. Massoud
Abstract:
Background: Rotavirus is the leading etiologic agent of severe diarrheal disease in infants and young children worldwide. The present study was aimed 1) to detect rotavirus infection as a cause of diarrhoea among children under 5 years of age using the two serological methods (ELISA and LA) and the PCR technique (2) to evaluate the three methodologies used for human RV detection in stool samples. Materials and Methods: This study was carried out on 247 children less than 5 years old, diagnosed clinically as acute gastroenteritis and attending Alexandria University Children Hospital at EL-Shatby. Rotavirus antigen was screened by ELISA and LA tests in all stool samples, whereas only 100 samples were subjected to RT-PCR method for detection of rotavirus RNA. Results: Out of the 247 studied cases with diarrhoea, rotavirus antigen was detected in 83 (33.6%) by ELISA and 73 (29.6%) by LA, while the 100 cases tested by RT-PCR showed that 44% of them had rotavirus RNA. Rotavirus diarrhoea was significantly presented with a marked seasonal peak during autumn and winter (61.4%). Conclusion: The present study confirms the huge burden of rotavirus as a major cause of acute diarrhoea in Egyptian infants and young children. It was concluded that; LA is equal in sensitivity to ELISA, ELISA is more specific than LA, and RT-PCR is more specific than ELISA and LA in diagnosis of rotavirus infection.Keywords: rotavirus, diarrhea, immunoenzyme techniques, latex fixation tests, RT-PCR
Procedia PDF Downloads 3726408 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 306407 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences
Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal
Abstract:
Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles
Procedia PDF Downloads 5136406 Spatial Mapping and Change Detection of a Coastal Woodland Mangrove Habitat in Fiji
Authors: Ashneel Ajay Singh, Anish Maharaj, Havish Naidu, Michelle Kumar
Abstract:
Mangrove patches are the foundation species located in the estuarine land areas. These patches provide a nursery, food source and protection for numerous aquatic, intertidal and well as land-based organisms. Mangroves also help in coastal protection, maintain water clarity and are one of the biggest sinks for blue carbon sequestration. In the Pacific Island countries, numerous coastal communities have a heavy socioeconomic dependence on coastal resources and mangroves play a key ecological and economical role in structuring the availability of these resources. Fiji has a large mangrove patch located in the Votua area of the Ba province. Globally, mangrove population continues to decline with the changes in climatic conditions and anthropogenic activities. Baseline information through wetland maps and time series change are essential references for development of effective mangrove management plans. These maps reveal the status of the resource and the effects arising from anthropogenic activities and climate change. In this study, we used remote sensing and GIS tools for mapping and temporal change detection over a period of >20 years in Votua, Fiji using Landsat imagery. Landsat program started in 1972 initially as Earth Resources Technology Satellite. Since then it has acquired millions of images of Earth. This archive allows mapping of temporal changes in mangrove forests. Mangrove plants consisted of the species Rhizophora stylosa, Rhizophora samoensis, Bruguiera gymnorrhiza, Lumnitzera littorea, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum. Change detection analysis revealed significant reduction in the mangrove patch over the years. This information serves as a baseline for the development and implementation of effective management plans for one of Fiji’s biggest mangrove patches.Keywords: climate change, GIS, Landsat, mangrove, temporal change
Procedia PDF Downloads 1806405 Analysis of Extreme Rainfall Trends in Central Italy
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Marco Cifrodelli, Corrado Corradini
Abstract:
The trend of magnitude and frequency of extreme rainfalls seems to be different depending on the investigated area of the world. In this work, the impact of climate change on extreme rainfalls in Umbria, an inland region of central Italy, is examined using data recorded during the period 1921-2015 by 10 representative rain gauge stations. The study area is characterized by a complex orography, with altitude ranging from 200 to more than 2000 m asl. The climate is very different from zone to zone, with mean annual rainfall ranging from 650 to 1450 mm and mean annual air temperature from 3.3 to 14.2°C. Over the past 15 years, this region has been affected by four significant droughts as well as by six dangerous flood events, all with very large impact in economic terms. A least-squares linear trend analysis of annual maximums over 60 time series selected considering 6 different durations (1 h, 3 h, 6 h, 12 h, 24 h, 48 h) showed about 50% of positive and 50% of negative cases. For the same time series the non-parametrical Mann-Kendall test with a significance level 0.05 evidenced only 3% of cases characterized by a negative trend and no positive case. Further investigations have also demonstrated that the variance and covariance of each time series can be considered almost stationary. Therefore, the analysis on the magnitude of extreme rainfalls supplies the indication that an evident trend in the change of values in the Umbria region does not exist. However, also the frequency of rainfall events, with particularly high rainfall depths values, occurred during a fixed period has also to be considered. For all selected stations the 2-day rainfall events that exceed 50 mm were counted for each year, starting from the first monitored year to the end of 2015. Also, this analysis did not show predominant trends. Specifically, for all selected rain gauge stations the annual number of 2-day rainfall events that exceed the threshold value (50 mm) was slowly decreasing in time, while the annual cumulated rainfall depths corresponding to the same events evidenced trends that were not statistically significant. Overall, by using a wide available dataset and adopting simple methods, the influence of climate change on the heavy rainfalls in the Umbria region is not detected.Keywords: climate changes, rainfall extremes, rainfall magnitude and frequency, central Italy
Procedia PDF Downloads 2376404 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach
Authors: Jorge R. Santos, Pedro Sebastiao
Abstract:
In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js
Procedia PDF Downloads 153