Search results for: hybrid genetic/pattern search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7354

Search results for: hybrid genetic/pattern search

5464 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 130
5463 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 142
5462 Simplifying the Migration of Architectures in Embedded Applications Introducing a Pattern Language to Support the Workforce

Authors: Farha Lakhani, Michael J. Pont

Abstract:

There are two main architectures used to develop software for modern embedded systems: these can be labelled as “event-triggered” (ET) and “time-triggered” (TT). The research presented in this paper is concerned with the issues involved in migration between these two architectures. Although TT architectures are widely used in safety-critical applications they are less familiar to developers of mainstream embedded systems. The research presented in this paper began from the premise that–for a broad class of systems that have been implemented using an ET architecture–migration to a TT architecture would improve reliability. It may be tempting to assume that conversion between ET and TT designs will simply involve converting all event-handling software routines into periodic activities. However, the required changes to the software architecture are, in many cases rather more profound. The main contribution of the work presented in this paper is to identify ways in which the significant effort involved in migrating between existing ET architectures and “equivalent” (and effective) TT architectures could be reduced. The research described in this paper has taken an innovative step in this regard by introducing the use of ‘Design patterns’ for this purpose for the first time.

Keywords: embedded applications, software architectures, reliability, pattern

Procedia PDF Downloads 329
5461 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension

Authors: Aleksandr Nagay, Gulnoz Khamidullayeva

Abstract:

It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.

Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition

Procedia PDF Downloads 276
5460 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
5459 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake

Authors: Shengjun Yan, Xuan Wang

Abstract:

Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.

Keywords: habitat quality, habitat degradation, water level changes, shallow lake

Procedia PDF Downloads 255
5458 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
5457 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 150
5456 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng

Authors: Ramesh Joshi, Nisha Khatik

Abstract:

Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.

Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers

Procedia PDF Downloads 501
5455 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 168
5454 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 304
5453 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 394
5452 Evaluation of Ceres Wheat and Rice Model for Climatic Conditions in Haryana, India

Authors: Mamta Rana, K. K. Singh, Nisha Kumari

Abstract:

The simulation models with its soil-weather-plant atmosphere interacting system are important tools for assessing the crops in changing climate conditions. The CERES-Wheat & Rice vs. 4.6 DSSAT was calibrated and evaluated for one of the major producers of wheat and rice state- Haryana, India. The simulation runs were made under irrigated conditions and three fertilizer applications dose of N-P-K to estimate crop yield and other growth parameters along with the phenological development of the crop. The genetic coefficients derived by iteratively manipulating the relevant coefficients that characterize the phenological process of wheat and rice crop to the best fit match between the simulated and observed anthesis, physological maturity and final grain yield. The model validated by plotting the simulated and remote sensing derived LAI. LAI product from remote sensing provides the edge of spatial, timely and accurate assessment of crop. For validating the yield and yield components, the error percentage between the observed and simulated data was calculated. The analysis shows that the model can be used to simulate crop yield and yield components for wheat and rice cultivar under different management practices. During the validation, the error percentage was less than 10%, indicating the utility of the calibrated model for climate risk assessment in the selected region.

Keywords: simulation model, CERES-wheat and rice model, crop yield, genetic coefficient

Procedia PDF Downloads 305
5451 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
5450 A Review on the Challenge and Need of Goat Semen Production and Artificial Insemination in Nepal

Authors: Pankaj K. Jha, Ajeet K. Jha, Pravin Mishra

Abstract:

Goat raising is a popular livestock sub-commodity of mixed farming system in Nepal. Besides food and nutritional security, it has an important role in the economy of many peoples. Goat breeding through AI is commonly practiced worldwide. It is a very basic tool to speed up genetic improvement and increase productivity. For the goat genetic improvement program, the government of Nepal has imported some specialized exotic goat breeds and semen. Some progress has been made in the initiation of selective breeding within the local breeds and practice of AI with imported semen. Importance of AI in goats has drawn more attention among goat farmers. However, importing semen is not a permanent solution at national level; rather, it is more important to develop and establish its own frozen semen production technique. Semen quality and its relationship with fertility are said to be a major concern in animal production, hence accurate measurement of semen fertilizing potential is of great importance. The survivability of sperm cells depends on semen quality. Survivability of sperm cells is assessed through visual and microscopic evaluation of spermatozoal progressive motility and morphology. In Nepal, there is lack of scientific information on seminal attributes of buck semen, its dilution, cooling and freezing technique under management conditions of Nepal. Therefore, the objective of this review was to provide brief information about breeding system, semen production and artificial insemination in Nepalese goat.

Keywords: artificial insemination, goat, Nepal, semen

Procedia PDF Downloads 212
5449 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
5448 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics

Procedia PDF Downloads 469
5447 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 373
5446 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 476
5445 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 169
5444 Hybrid Learning and Testing at times of Corona: A Case Study at an English Department

Authors: Mimoun Melliti

Abstract:

In the wake of the global pandemic, educational systems worldwide faced unprecedented challenges and had to swiftly adapt to new conditions. This necessitated a fundamental shift in assessment processes, as traditional in-person exams became impractical. The present paper aims to investigate how educational systems have adapted to the new conditions imposed by the outbreak of the pandemic. This paper serves as a case study documenting the various decisions, conditions, experiments, and outcomes associated with transitioning the assessment processes of a higher education institution to a fully online format. The participants of this study consisted of 4666 students from health, engineering, science, and humanities disciplines, who were enrolled in general English (Eng101/104) and English for specific purposes (Eng102/113) courses at a preparatory year institution in Saudi Arabia. The findings of this study indicate that online assessment can be effectively implemented given the fulfillment of specific requirements. These prerequisites encompass the presence of competent staff, administrative flexibility, and the availability of necessary infrastructure and technological support. The significance of this case study lies in its comprehensive description of the various steps and measures undertaken to adapt to the "new normal" situation. Furthermore, it evaluates the impact of these measures and offers detailed recommendations for potential similar future scenarios.

Keywords: hybrid learning, testing, adaptive teaching, EFL

Procedia PDF Downloads 61
5443 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 152
5442 Genetic Screening of Sahiwal Bulls for Higher Fertility

Authors: Atul C. Mahajan, A. K. Chakravarty, V. Jamuna, C. S. Patil, Neeraj Kashyap, Bharti Deshmukh, Vijay Kumar

Abstract:

The selection of Sahiwal bulls on the basis of dams best lactation milk yield under breeding programme in herd of the country neglecting fertility traits leads to deterioration in their performances and economy. The goal of this study was to explore polymorphism of CRISP2 gene and their association with semen traits (Post Thaw Motility, Hypo-osmotic Swelling Test, Acrosome Integrity, DNA Fragmentation and capacitation status), scrotal circumference, expected predicted difference (EPD) for milk yield and fertility. Sahiwal bulls included in present study were 60 bulls used in breeding programme as well as 50 young bulls yet to be included in breeding programme. All the Sahiwal bulls were found to be polymorphic for CRISP2 gene (AA, AG and GG) present within exon 7 to the position 589 of CRISP2 mRNA by using PCR-SSCP and Sequencing. Semen analysis were done on 60 breeding bulls frozen semen doses pertaining to four season (winter, summer, rainy and autumn). The scrotal circumference was measured from existing Sahiwal breeding bulls in the herd (n=47). The effect of non-genetic factors on reproduction traits were studied by least-squares technique and the significant difference of means between subclasses of season, period, parity and age group were tested. The data were adjusted for the significant non-genetic factors to remove the differential environmental effects. The adjusted data were used to generate traits like Waiting Period (WP), Pregnancy Rate (PR), Expected Predicted Difference (EPD) of fertility, respectively. Genetic and phenotypic parameters of reproduction traits were estimated. The overall least-squares means of Age at First Calving (AFC), Service Period (SP) and WP were estimated as 36.69 ± 0.18 months, 120.47 ± 8.98 days and 79.78 ± 3.09 days respectively. Season and period of birth had significant effect (p < 0.01) on AFC. AFC was highest during autumn season of birth followed by summer, winter and rainy. Season and period of calving had significant effect (p < 0.01) on SP and WP of sahiwal cows. The WP for Sahiwal cows was standardized based on four developed predicted model for pregnancy rate 42, 63, 84 and 105 days using all lactation records. The WP for Sahiwal cows were standardized as 42 days. A selection criterion was developed for Sahiwal breeding bulls and young Sahiwal bulls on the basis of EPD of fertility. The genotype has significant effect on expected predicted difference of fertility and some semen parameters like post thaw motility and HOST. AA Genotype of CRISP2 gene revealed better EPD for fertility than EPD of milk yield. AA genotype of CRISP2 gene has higher scrotal circumference than other genotype. For young Sahiwal bulls only AA genotypes were present with similar patterns. So on the basis of association of genotype with seminal traits, EPD of milk yield and EPD for fertility status, AA and AG genotype of CRISP2 gene was better for higher fertility in Sahiwal bulls.

Keywords: expected predicted difference, fertility, sahiwal, waiting period

Procedia PDF Downloads 584
5441 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
5440 Impact of Ethnic and Religious Identity on Coping Behavior in Young Adults: Cross-Cultural Research

Authors: Yuliya Kovalenko

Abstract:

Given the social nature of people, it is interesting to explore strategies of responding to psycho-traumatic situations in individuals of different ethnic and religious identity. This would allow to substantially expand the idea of human behavior in general, and coping behavior, in particular. This paper investigated the weighted impact of ethnic and religious identities on the patterns of coping behavior. This cross-cultural research empirically revealed intergroup differences in coping strategies and behavior in the samples of young students and teachers of different ethnic identities (Egyptians N=216 and Ukrainians N=109) and different religious identities (Egyptian Muslims N=147 and Christians, including Egyptian Christians N=68 and Ukrainian Christians N = 109). The empirical data were obtained using the questionnaires SACS and COPE. Statistical analysis and interpretation of the results were performed with IBM SPSS-23.0. It was found that, compared to the religious identity, the ethnic identity of the subjects appeared more predictive of coping behavior. It was shown that the constant exchange of information and the unity of biological and social contributed to a more homogeneous picture in the society where Christians and Muslims were integrated into a single cultural space. It was concluded that depending on their ethnic identity, individuals would form a specific hierarchy of coping strategies resulting in a specific pattern of coping with certain stressors. The Egyptian subjects revealed the following pattern of coping with various kinds of academic stress: 'seeking social support', 'problem solving', 'adapting', 'seeking information'. The coping pattern demonstrated by the Ukrainian subjects could be presented as 'seeking information', 'adapting', 'seeking social support', 'problem solving'. There was a tendency in the group of Egyptians to engage in more collectivist coping strategies (with the predominant coping strategy 'religious coping'), in contrast to the Ukrainians who displayed more individualistic coping strategies (with 'planning' and 'active coping' as the mostly used coping strategies). At the same time, it was obvious that Ukrainians should not be unambiguously attributed to the individualistic coping behavior due to their reliance on 'seeking social support' and 'social contact'. The final conclusion was also drawn from the peculiarities of developing religious identity, including religiosity, in Egyptians (formal religious education of both Muslims and Christians) and Ukrainians (more spontaneous process): Egyptians seem to learn to resort to the religious coping, which could be an indication that, in principle, it is possible and necessary to train individuals in desirable coping behavior.

Keywords: coping behavior, cross-cultural research, ethnic and religious identity, hierarchical pattern of coping

Procedia PDF Downloads 162
5439 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 176
5438 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues

Authors: Amirhossein Chambari

Abstract:

This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.

Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I

Procedia PDF Downloads 583
5437 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 508
5436 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 224
5435 Impact of Ocean Acidification on Gene Expression Dynamics during Development of the Sea Urchin Species Heliocidaris erythrogramma

Authors: Hannah R. Devens, Phillip L. Davidson, Dione Deaker, Kathryn E. Smith, Gregory A. Wray, Maria Byrne

Abstract:

Marine invertebrate species with calcifying larvae are especially vulnerable to ocean acidification (OA) caused by rising atmospheric CO₂ levels. Acidic conditions can delay development, suppress metabolism, and decrease the availability of carbonate ions in the ocean environment for skeletogenesis. These stresses often result in increased larval mortality, which may lead to significant ecological consequences including alterations to the larval settlement, population distribution, and genetic connectivity. Importantly, many of these physiological and developmental effects are caused by genetic and molecular level changes. Although many studies have examined the effect of near-future oceanic pH levels on gene expression in marine invertebrates, little is known about the impact of OA on gene expression in a developmental context. Here, we performed mRNA-sequencing to investigate the impact of environmental acidity on gene expression across three developmental stages in the sea urchin Heliocidaris erythrogramma. We collected RNA from gastrula, early larva, and 1-day post-metamorphic juvenile sea urchins cultured at present-day and predicted future oceanic pH levels (pH 8.1 and 7.7, respectively). We assembled an annotated reference transcriptome encompassing development from egg to ten days post-metamorphosis by combining these data with datasets from two previous developmental transcriptomic studies of H. erythrogramma. Differential gene expression and time course analyses between pH conditions revealed significant alterations to developmental transcription that are potentially associated with pH stress. Consistent with previous investigations, genes involved in biomineralization and ion transport were significantly upregulated under acidic conditions. Differences in gene expression between the two pH conditions became more pronounced post-metamorphosis, suggesting a development-dependent effect of OA on gene expression. Furthermore, many differences in gene expression later in development appeared to be a result of broad downregulation at pH 7.7: of 539 genes differentially expressed at the juvenile stage, 519 of these were lower in the acidic condition. Time course comparisons between pH 8.1 and 7.7 samples also demonstrated over 500 genes were more lowly expressed in pH 7.7 samples throughout development. Of the genes exhibiting stage-dependent expression level changes, over 15% of these diverged from the expected temporal pattern of expression in the acidic condition. Through these analyses, we identify novel candidate genes involved in development, metabolism, and transcriptional regulation that are possibly affected by pH stress. Our results demonstrate that pH stress significantly alters gene expression dynamics throughout development. A large number of genes differentially expressed between pH conditions in juveniles relative to earlier stages may be attributed to the effects of acidity on transcriptional regulation, as a greater proportion of mRNA at this later stage has been nascent transcribed rather than maternally loaded. Also, the overall downregulation of many genes in the acidic condition suggests that OA-induced developmental delay manifests as suppressed mRNA expression, possibly from lower transcription rates or increased mRNA degradation in the acidic environment. Further studies will be necessary to determine in greater detail the extent of OA effects on early developing marine invertebrates.

Keywords: development, gene expression, ocean acidification, RNA-sequencing, sea urchins

Procedia PDF Downloads 168