Search results for: objects detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4242

Search results for: objects detection

2382 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 107
2381 Detection of JC Virus DNA and T-Ag Expression in a Subpopulation of Tunisian Colorectal Carcinomas

Authors: Wafa Toumi, Alessandro Ripalti, Luigi Ricciardiello, Dalila Gargouri, Jamel Kharrat, Abderraouf Cherif, Ahmed Bouhafa, Slim Jarboui, Mohamed Zili, Ridha Khelifa

Abstract:

Background & aims: Colorectal cancer (CRC) is one of the most common malignancies throughout the world. Several risk factors, both genetic and environmental, including viral infections, have been linked to colorectal carcinogenesis. A few studies report the detection of human polyomavirus JC (JCV) DNA and transformation antigen (T-Ag) in a fraction of the colorectal tumors studied and suggest an association of this virus with CRC. In order to investigate whether such an association of JCV with CRC will hold in a different epidemiological setting, we looked for the presence of JCV DNA and T-Ag expression in a group of Tunisian CRC patients. Methods: Fresh colorectal mucosa biopsies were obtained from 17 healthy volunteers and from both colorectal tumors and adjacent normal tissues of 47 CRC patients. DNA was extracted from fresh biopsies or from formalin-fixed, paraffin-embedded tissue sections using the Invitrogen Purelink Genomic DNA mini Kit. A simple PCR and a nested PCR were used to amplify a region of the T-Ag gene. The obtained PCR products revealed a 154 bp and a 98 bp bands, respectively. Specificity was confirmed by sequencing of the PCR products. T-Ag expression was determined by immunohistochemical staining using a mouse monoclonal antibody (clone PAb416) directed against SV40 T-Ag that cross reacts with JCV T-Ag. Results: JCV DNA was found in 12 (25%) and 22 (46%) of the CRC tumors by simple PCR and by nested PCR, respectively. All paired adjacent normal mucosa biopsies were negative for viral DNA. Sequencing of the DNA amplicons obtained confirmed the authenticity of T-Ag sequences. Immunohistochemical staining showed nuclear T-Ag expression in all 22 JCV DNA- positive samples and in 3 additional tumor samples which appeared DNA-negative by PCR. Conclusions: These results suggest an association of JCV with a subpopulation of Tunisian colorectal tumors.

Keywords: colorectal cancer, immunohistochemistry, Polyomavirus JC, PCR

Procedia PDF Downloads 363
2380 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 72
2379 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts

Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad

Abstract:

In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.

Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample

Procedia PDF Downloads 316
2378 Biospiral-Detect to Distinguish PrP Multimers from Monomers

Authors: Gulyas Erzsebet

Abstract:

The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.

Keywords: diagnosis, ELISA, Prion, TSE

Procedia PDF Downloads 251
2377 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
2376 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 262
2375 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 160
2374 Using Metacognitive Strategies in Reading Comprehension by EFL Students

Authors: Simin Sadeghi-Saeb

Abstract:

Metacognitive strategies consistently play important roles in reading comprehension. The metacognitive strategies involve the active monitoring and consequent regulation and orchestration of the cognitive processes in relation to the cognitive objects or data on which they bear. In this paper, the effect of instruction in using metacognitive strategies on reading academic materials, type of metacognitive strategies were mostly used by college university students before and after the instruction and the level they use those strategies before and after the instruction were studied. For these aims, 50 female college students were chosen. Then, they were divided randomly into two groups, experimental and control groups. At first session, students in both groups took the standard TOFEL exam. After the pre-test had been administered, the instruction began. After treatment, a post-test was taken. It is useful to state that after pre-test and post-test the same questionnaire was handed to the students of experimental group. The results of this research show that the instruction of metacognitive strategies has positive effect on the students' scores in reading comprehension tests. Furthermore, it showed that before and after the instruction, the students' usage of metacognitive strategies changed. Also, it demonstrated that the instruction affected the students' level of metacognitive strategies' usage.

Keywords: EFL students, English reading comprehension, instruction, metacognitive strategies

Procedia PDF Downloads 299
2373 Health Literacy and Knowledge Related to Tuberculosis among Outpatients at a Referral Hospital in Lima, Peru

Authors: Rosalina Penaloza, Joanna Navarro, Pauline Jolly, Anna Junkins, Carlos Seas, Larissa Otero

Abstract:

Background: Tuberculosis (TB) case detection in Peru relies on passive case finding. This strategy relies on the assumption that the community is aware that a persistent cough is a possible symptom of TB and that formal health care needs to be sought. Despite its importance, health knowledge specific to TB is underexplored in Peru. This study aimed to assess health literacy and level of TB knowledge among outpatients attending a referral hospital in Lima, Peru. The goal was to ascertain knowledge gaps in key areas relating to TB, to identify and prioritize subgroups for intervention, and to provide insight for policy and community interventions considering health literacy. Methods: An observational cross-sectional study was conducted using a survey to measure sociodemographic factors, tuberculosis knowledge, and health literacy. Bivariate and Multivariate logistic regression was performed to study the associations between variables and to account for potential confounders. The study was conducted at Hospital Cayetano Heredia in Lima, Peru from June – August 2017. Results: 272 participants were included in the analysis. 57.7% knew someone who had had TB before, 9% had had TB in the past. Two weeks a cough was correctly identified as a symptom that could be TB by 69.1%. High TB knowledge was found among 149 (54.8%) participants. High health literacy was found among 193 (71.0%) participants. Health literacy and TB knowledge were not significantly associated (OR 0.9 (95%CI 0.5-1.5)). After controlling for sex, age, district, education, health insurance, frequency of hospital visits and previous TB diagnosis: High TB knowledge was associated with knowing someone with TB (aOR 2.7 (95%CI 1.6-4.7)) and being a public transport driver, (aOR 0.2 (95%CI 0.05-0.9)). Not being poor was the single factor associated with high health literacy (aOR 3.8 (95%CI 1.6-8.9)). Conclusions: TB knowledge was fair, though 30% did not know the most important symptom of TB. Tailoring educational strategies to risk groups may enhance passive case detection especially amongst transport workers in Lima, Peru.

Keywords: health literacy, Peru, tuberculosis, tuberculosis knowledge

Procedia PDF Downloads 505
2372 Fecal Prevalence, Serotype Distribution and Antimicrobial Resistance of Salmonella in Dairy Cattle in Central Ethiopia

Authors: Tadesse Eguale, Ephrem Engdawork, Wondwossen Gebreyes, Dainel Asrat, Hile Alemayehu, John Gunn

Abstract:

Salmonella is one of the major zoonotic pathogens affecting wide range of vertebrates and humans worldwide. Consumption of contaminated dairy products and contact with dairy cattle represent the common sources of non-typhoidal Salmonella infection in humans. Fecal samples were collected from 132 dairy herds in central Ethiopia and cultured for Salmonella to determine the prevalence, serotype distribution and antimicrobial susceptibility. Salmonella was recovered from the feces of at least one cattle in 10(7.6%) of the dairy farms. Out of 1193 fecal samples 30(2.5%) were positive for Salmonella. Large farm size, detection of diarrhea in one or more animals during sampling and keeping animals completely indoor compared to occasional grazing outside were associated with Salmonella positivity of the farms. Farm level prevalence of Salmonella was significantly higher in young animals below 6 months of age compared to other age groups(X2=10.24; p=0.04). Nine different serotypes were isolated. The four most frequently recovered serotypes were S. Typhimurium (23.3%),S. Saintpaul (20%) and S. Kentucky and S. Virchow (16.7%) each. All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7%), 20(66.7%), 18(60%), 16(53.3%) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline respectively. Resistance to 2 drugs was detected in 93.3% of the isolates. Resistance to 3 or more drugs were detected in 21(70%) of the total isolates while multi-drug resistance (MDR) to 7 or more drugs were detected in 12 (40%) of the isolates. The rate of occurrence of MDR in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa((p= 0.009). The detection of high MDR in Salmonella isolates originating from dairy farms warrants the need for strict pathogen reduction strategy in dairy cattle and spread of these MDR strains to human population.

Keywords: salmonella, antimicrobial resistance, fecal prevalence

Procedia PDF Downloads 497
2371 Digital Preservation: Requirement of 21st Century

Authors: Gaurav Kumar, Shilpa

Abstract:

Digital libraries have been established all over the world to create, maintain and to preserve the digital materials. This paper focuses on operational digital preservation systems specifically in educational organizations in India. It considers the broad range of digital objects including e-journals, technical reports, e-records, project documents, scientific data, etc. This paper describes the main objectives, process and technological issues involved in preservation of digital materials. Digital preservation refers to the various methods of keeping digital materials alive for the future. It includes everything from electronic publications on CD-ROM to Online database and collections of experimental data in digital format maintains the ability to display, retrieve and use digital collections in the face of rapidly changing technological and organizational infrastructures elements. This paper exhibits the importance and objectives of digital preservation. The necessities of preservation are hardware and software technology to interpret the digital documents and discuss various aspects of digital preservation.

Keywords: preservation, digital preservation, digital dark age, conservation, archive, repository, document, information technology, hardware, software, organization, machine readable format

Procedia PDF Downloads 457
2370 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying

Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco

Abstract:

The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.

Keywords: frying, HPLC, salting, swordfish, vitamins

Procedia PDF Downloads 126
2369 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 172
2368 Three Dimensional Computational Fluid Dynamics Simulation of Wall Condensation inside Inclined Tubes

Authors: Amirhosein Moonesi Shabestary, Eckhard Krepper, Dirk Lucas

Abstract:

The current PhD project comprises CFD-modeling and simulation of condensation and heat transfer inside horizontal pipes. Condensation plays an important role in emergency cooling systems of reactors. The emergency cooling system consists of inclined horizontal pipes which are immersed in a tank of subcooled water. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes, and due to the subcooled water around the pipe, this steam will start to condense. These horizontal pipes act as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. This project is defined in order to model all these processes which happening in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. This project is an ongoing project which has been started 1 year ago in Helmholtz Zentrum Dresden Rossendorf (HZDR), Fluid Dynamics department. In HZDR most in cooperation with ANSYS different models are developed for modeling multiphase flows. Inhomogeneous MUSIG model considers the bubble size distribution and is used for modeling small-scaled dispersed gas phase. AIAD (Algebraic Interfacial Area Density Model) is developed for detection of the local morphology and corresponding switch between them. The recent model is GENTOP combines both concepts. GENTOP is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures. All these models are validated for adiabatic cases without any phase change. Therefore, the start point of the current PhD project is using the available models and trying to integrate phase transition and wall condensing models into them. In order to simplify the idea of condensation inside horizontal tubes, 3 steps have been defined. The first step is the investigation of condensation inside a horizontal tube by considering only direct contact condensation (DCC) and neglect wall condensation. Therefore, the inlet of the pipe is considered to be annular flow. In this step, AIAD model is used in order to detect the interface. The second step is the extension of the model to consider wall condensation as well which is closer to the reality. In this step, the inlet is pure steam, and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modeling of different morphologies which are occurring inside the tube during the condensation via using GENTOP model. By using GENTOP, the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available also in HZDR.

Keywords: wall condensation, direct contact condensation, AIAD model, morphology detection

Procedia PDF Downloads 305
2367 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 169
2366 The Fast Diagnosis of Acanthamoeba Keratitis Using Real-Time PCR Assay

Authors: Fadime Eroglu

Abstract:

Acanthamoeba genus belongs to kingdom protozoa, and it is known as free-living amoebae. Acanthamoeba genus has been isolated from human bodies, swimming pools, bottled mineral water, contact lens solutions, dust, and soil. The members of the genus Acanthamoeba causes Acanthamoeba Keratitis which is a painful sight-threatening disease of the eyes. In recent years, the prevalence of Acanthamoeba keratitis has been high rate reported. The eight different Acanthamoeba species are known to be effective in Acanthamoeba keratitis. These species are Acanthamoeba castellanii, Acanthamoeba polyphaga, Acanthamoeba griffini, Acanthamoeba hatchetti, Acanthamoeba culbertsoni and Acanhtamoeba rhysodes. The conventional diagnosis of Acanthamoeba Keratitis has relied on cytological preparations and growth of Acanthamoeba in culture. However molecular methods such as real-time PCR has been found to be more sensitive. The real-time PCR has now emerged as an effective method for more rapid testing for the diagnosis of infectious disease in decade. Therefore, a real-time PCR assay for the detection of Acanthamoeba keratitis and Acanthamoeba species have been developed in this study. The 18S rRNA sequences from Acanthamoeba species were obtained from National Center for Biotechnology Information and sequences were aligned with MEGA 6 programme. Primers and probe were designed using Custom Primers-OligoPerfectTMDesigner (ThermoFisherScientific, Waltham, MA, USA). They were also assayed for hairpin formation and degree of primer-dimer formation with Multiple Primer Analyzer ( ThermoFisherScientific, Watham, MA, USA). The eight different ATCC Acanthamoeba species were obtained, and DNA was extracted using the Qiagen Mini DNA extraction kit (Qiagen, Hilden, Germany). The DNA of Acanthamoeba species were analyzed using newly designed primer and probe set in real-time PCR assay. The early definitive laboratory diagnosis of Acanthamoeba Keratitis and the rapid initiation of suitable therapy is necessary for clinical prognosis. The results of the study have been showed that new primer and probes could be used for detection and distinguish for Acanthamoeba species. These new developing methods are helpful for diagnosis of Acanthamoeba Keratitis.

Keywords: Acathamoeba Keratitis, Acanthamoeba species, fast diagnosis, Real-Time PCR

Procedia PDF Downloads 121
2365 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 612
2364 Reuse of Huge Industrial Areas

Authors: Martina Perinkova, Lenka Kolarcikova, Marketa Twrda

Abstract:

Brownfields are one of the most important problems that must be solved by today's cities. The topic of this article is description of developing a comprehensive transformation of post-industrial area of the former iron factory national cultural heritage Lower Vítkovice. City of Ostrava used to be industrial superpower of the Czechoslovak Republic, especially in the area of coal mining and iron production, after declining industrial production and mining in the 80s left many unused areas of former factories generally brownfields and backfields. Since the late 90s we are observing how the city officials or private entities seeking to remedy this situation. Regeneration of brownfields is a very expensive and long-term process. The area is now rebuilt for tourists and residents of the city in the entertainment, cultural, and social center. It was necessary do the reconstruction of the industrial monuments. Equally important was the construction of new buildings, which helped reusing of the entire complex. This is a unique example of transformation of technical monuments and completion of necessary new objects, so that the area could start working again and reintegrate back into the urban system.

Keywords: brown fields, conversion, historical and industrial buildings, reconstruction

Procedia PDF Downloads 330
2363 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products

Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 402
2362 Computation of ΔV Requirements for Space Debris Removal Using Orbital Transfer

Authors: Sadhvi Gupta, Charulatha S.

Abstract:

Since the dawn of the early 1950s humans have launched numerous vehicles in space. Be it from rockets to rovers humans have done tremendous growth in the technology sector. While there is mostly upside for it for humans the only major downside which cannot be ignored now is the amount of junk produced in space due to it i.e. space debris. All this space junk amounts from objects we launch from earth which so remains in orbit until it re-enters the atmosphere. Space debris can be of various sizes mainly the big ones are of the dead satellites floating in space and small ones can consist of various things like paint flecks, screwdrivers, bolts etc. Tracking of small space debris whose size is less than 10 cm is impossible and can have vast implications. As the amount of space debris increases in space the chances of it hitting a functional satellite also increases. And it is extremely costly to repair or recover the satellite once hit by a revolving space debris. So the proposed solution is, Actively removing space debris while keeping space sustainability in mind. For this solution a total of 8 modules will be launched in LEO and in GEO and these models will be placed in their desired orbits through Hohmann transfer and for that calculating ΔV values is crucial. After which the modules will be placed in their designated positions in STK software and thorough analysis is conducted.

Keywords: space debris, Hohmann transfer, STK, delta-V

Procedia PDF Downloads 86
2361 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades

Authors: Abdullah Alnutayfat, Alexander Sutin

Abstract:

One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).

Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation

Procedia PDF Downloads 85
2360 Design and Implementation of Automated Car Anti-Collision System Device Using Distance Sensor

Authors: Mehrab Masayeed Habib, Tasneem Sanjana, Ahmed Amin Rumel

Abstract:

Automated car anti-collision system is a trending technology of science. A car anti-collision system is an automobile safety system. The aim of this paper was to describe designing a car anti-collision system device to reduce the severity of an accident. The purpose of this device is to prevent collision among cars and objects to reduce the accidental death of human. This project gives an overview of secure & smooth journey of car as well as the certainty of human life. This system is controlled by microcontroller PIC. Sharp distance sensor is used to detect any object within the danger range. A crystal oscillator is used to produce the oscillation and generates the clock pulse of the microcontroller. An LCD is used to give information about the safe distance and a buzzer is used as alarm. An actuator is used as automatic break and inside the actuator; there is a motor driver that runs the actuator. For coding ‘microC PRO for PIC’ was used and ’Proteus Design Suite version 8 Software’ was used for simulation.

Keywords: sharp distance sensor, microcontroller, MicroC PRO for PIC, proteus, actuator, automobile anti-collision system

Procedia PDF Downloads 474
2359 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
2358 Physicochemical Characterization of Asphalt Ridge Froth Bitumen

Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho

Abstract:

Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.

Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy

Procedia PDF Downloads 428
2357 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 120
2356 Isolation and Molecular Detection of Marek’s Disease Virus from Outbreak Cases in Chicken in South Western Ethiopia

Authors: Abdela Bulbula

Abstract:

Background: Marek’s disease virus is a devastating infection, causing high morbidity and mortality in chickens in Ethiopia. Methods: The current study was conducted from March to November, 2021 with the general objective of performing antemortem and postmortem, isolation, and molecular detection of Marek’s disease virus from outbreak cases in southwestern Ethiopia. Accordingly, based on outbreak information reported from the study sites namely, Bedelle, Yayo, and Bonga towns in southwestern Ethiopia, 50 sick chickens were sampled. The backyard and intensive farming systems of chickens were included in the sampling and priorities were given for chickens that showed clinical signs that are characteristics of Marek’s disease. Results: By clinical examinations, paralysis of legs and wings, gray eye, loss of weight, difficulty in breathing, and depression were recorded on all chickens sampled for this study and death of diseased chickens was observed. In addition, enlargement of the spleen and gross lesions of the liver and heart were recorded during postmortem examination. The death of infected chickens was observed in both vaccinated and non-vaccinated flocks. Out of 50 pooled feather follicle samples, Marek’s disease virus was isolated from 14/50 (28%) by cell culture method and out of six tissue samples, the virus was isolated from 5/6(83.30%). By Real time polymerization chain reaction technique, which was targeted to detect the Meq gene, Marek’s disease virus was detected from 18/50 feather follicles which accounts for 36% of sampled chickens. Conclusion: In general, the current study showed that the circulating Marek’s disease virus in southwestern Ethiopia was caused by the oncogenic Gallid herpesvirus-2 (Serotype-1). Further research on molecular characterization of revolving virus in current and other regions is recommended for effective control of the disease through vaccination.

Keywords: Ethioi, Marek's disease, isolation, molecular

Procedia PDF Downloads 70
2355 An Experience of HIV Testing and Counseling Services at a Tertiary Care Center of Bangladesh

Authors: S. M. Rashed Ul Islam, Shahina Tabassum, Afsana Anwar Miti

Abstract:

Objective: HIV testing and counseling center (HTC) is an important component of the HIV/AIDS detection, prevention and control interventions. The service was first initiated at the Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU) since the first case detection in 1989. The present study aimed to describe the demographic profile among the attendees tested HIV positive. Methods: The present study was carried out among 219 HIV positive cases detected through screening at the Department of Virology of BSMMU during the year of 2012-2016. Data were collected through pre-structured written questionnaire during the counseling session. Data were expressed as frequency and percentages and analyzed using SPSS v20.0 program. Results: Out of 219 HIV cases detected, 77.6% were males, and 22.4% were females with a mean age (mean±SD) of 35.46±9.46 years. Among them, 70.7% belonged to the 26-45 age groups representing the sexually active age. The majority of the cases were married (86.3%) and 49.8% had primary level of education whereas, 8.7% were illiterate. Nearly 42% of cases were referred from Chittagong division (south-east part of the country) followed by Dhaka division (35.6%). The bulk of study population admitted to involvement in high-risk behaviour (90%) in the past and 42% of them had worked overseas. The Pearson Chi-square (χ2) analysis revealed significant relationship of gender with marital (χ2=7.88 at 2% level) and occupation status (χ2=120.48 at 6% level); however, no association was observed with risk behaviour and educational status. Recommendations: HIV risk behavior was found to be a prime source for HIV infection among the study population. So, there is need for health education and awareness program to bring about behavioral changes to halt the yearly increase of new cases in the country with special attention to our overseas workers on HIV/AIDS risk and safety.

Keywords: Bangladesh, health education, HIV testing and counseling (HTC), HIV/AIDS, risk behavior

Procedia PDF Downloads 295
2354 Efficient Motion Estimation by Fast Three Step Search Algorithm

Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar

Abstract:

The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.

Keywords: block matching, exhaustive search motion estimation, three step search, video compression

Procedia PDF Downloads 491
2353 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 65