Search results for: fluid mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2495

Search results for: fluid mechanics

635 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products

Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh

Abstract:

Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.

Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask

Procedia PDF Downloads 446
634 On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 345
633 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 288
632 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 121
631 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition

Authors: Zainab A. Bu Sinnah, David I. Graham

Abstract:

The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.

Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition

Procedia PDF Downloads 214
630 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM

Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán

Abstract:

The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.

Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM

Procedia PDF Downloads 98
629 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 142
628 Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma

Authors: Gabriele Ciasca, Tanya E. Sassun, Eleonora Minelli, Manila Antonelli, Massimiliano Papi, Antonio Santoro, Felice Giangaspero, Roberto Delfini, Marco De Spirito

Abstract:

Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions.

Keywords: AFM, nano-mechanics, nanomedicine, brain tumors, glioblastoma

Procedia PDF Downloads 320
627 Numerical Simulation of the Effect of Single and Dual Synthetic Jet on Stall Phenomenon On NACA (National Advisory Committee for Aeronautics) GA(W)-2 Airfoil

Authors: Abbasali Abouei Mehrizi, Hamid Hassanzadeh Afrouzi

Abstract:

Reducing the drag force increases the efficiency of the aircraft and its better performance. Flow control methods delay the phenomenon of flow separation and consequently reduce the reversed flow phenomenon in the separation region and enhance the performance of the lift force while decreasing the drag force and thus improving the aircraft efficiency. Flow control methods can be divided into active and passive types. The use of synthetic jets actuator (SJA) used in this study for NACA GA (W) -2 airfoil is one of the active flow control methods to prevent stall phenomenon on the airfoil. In this research, the relevant airfoil in different angles of attack with and without jets has been compared by OpenFOAM. Also, after achieving the proper SJA position on the airfoil suction surface, the simultaneous effect of two SJAs has been discussed. It was found to have the best effect at 12% chord (C), close to the airfoil’s leading edge (LE). At 12% chord, SJA decreases the drag significantly with increasing lift, and also, the average lift increase was higher than other situations and was equal to 10.4%. The highest drag reduction was about 5% in SJA=0.25C. Then, due to the positive effects of SJA in the 12% and 25% chord regions, these regions were considered for applying dual jets in two post-stall angles of attack, i.e., 16° and 22°.

Keywords: active and passive flow control methods, computational fluid dynamics, flow separation, synthetic jet

Procedia PDF Downloads 58
626 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 124
625 Simulation Study of Asphaltene Deposition and Solubility of CO2 in the Brine during Cyclic CO2 Injection Process in Unconventional Tight Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Sun Lu, Syed Jamal-Ud-Din, Xinzhe Zhao

Abstract:

A compositional reservoir simulation model (CMG-GEM) was used for cyclic CO2 injection process in unconventional tight reservoir. Cyclic CO2 injection is an enhanced oil recovery process consisting of injection, shut-in, and production. The study of cyclic CO2 injection and hydrocarbon recovery in ultra-low permeability reservoirs is mainly a function of rock, fluid, and operational parameters. CMG-GEM was used to study several design parameters of cyclic CO2 injection process to distinguish the parameters with maximum effect on the oil recovery and to comprehend the behavior of cyclic CO2 injection in tight reservoir. On the other hand, permeability reduction induced by asphaltene precipitation is one of the major issues in the oil industry due to its plugging onto the porous media which reduces the oil productivity. In addition to asphaltene deposition, solubility of CO2 in the aquifer is one of the safest and permanent trapping techniques when considering CO2 storage mechanisms in geological formations. However, the effects of the above uncertain parameters on the process of CO2 enhanced oil recovery have not been understood systematically. Hence, it is absolutely necessary to study the most significant parameters which dominate the process. The main objective of this study is to improve techniques for designing cyclic CO2 injection process while considering the effects of asphaltene deposition and solubility of CO2 in the brine in order to prevent asphaltene precipitation, minimize CO2 emission, optimize cyclic CO2 injection, and maximize oil production.

Keywords: tight reservoirs, cyclic O₂ injection, asphaltene, solubility, reservoir simulation

Procedia PDF Downloads 363
624 Structural Modeling and Experimental-Numerical Correlation of the Dynamic Behavior of the Portuguese Guitar by Using a Structural-Fluid Coupled Model

Authors: M. Vieira, V. Infante, P. Serrão, A. Ribeiro

Abstract:

The Portuguese guitar is a pear-shaped plucked chordophone particularly known for its role in Fado, the most distinctive traditional Portuguese musical style. The acknowledgment of the dynamic behavior of the Portuguese guitar, specifically of its modal and mode shape response, has been the focus of different authors. In this research, the experimental results of the dynamic behavior of the guitar, which were previously obtained, are correlated with a vibro-acoustic finite element model of the guitar. The modelling of the guitar offered several challenges which are presented in this work. The results of the correlation between experimental and numerical data are presented and indicate good correspondence for the studied mode shapes. The influence of the air inside the chamber, for the finite element analysis, is shown to be crucial to understand the low-frequency modes of the Portuguese guitar, while, for higher frequency modes, the geometry of the guitar assumes greater relevance. Comparison is made with the classical guitar, providing relevant information about the intrinsic differences between the two, such as between its tones and other acoustical properties. These results represent a sustained base for future work, which will allow the study of the influence of different location and geometry of diverse components of the Portuguese guitar, being as well an asset to the comprehension of its musical properties and qualities and may, furthermore, represent an advantage for its players and luthiers.

Keywords: dynamic behavior of guitars, instrument acoustics, modal analysis, Portuguese guitar

Procedia PDF Downloads 380
623 An Internet of Things Smart Washroom Framework

Authors: Robin Ratnasingham, Maher Elshakankiri

Abstract:

This research report will look at how to make a smart washroom to increase public hygiene and cleanliness. The system would use IoT devices to pick up various activities in the washroom and notify the appropriate stakeholders or devices to regulate the condition of the washroom. As more people are required to physically go back to the office or school, ensuring a clean and sanitized washroom is even more important now than before. It would help prevent virus outbreaks and safeguard the organization from shutdowns or slowdowns in their business. A framework of the suggested smart washroom was introduced to help reduce the chances of a virus outbreak. Most organizations outsource renovation or implementation to an external party. Using the smart washroom framework, we looked at vendors that provide smart washroom solutions. There are IoT vendors that cannot match the framework, and there are vendors that can support the framework design. This segment is a niche market, and most of the devices are similar in their basic functions. However, all the vendors have unique characteristics to give them a competitive advantage over the rest of the IoT washroom companies. Ultimately, the organization would need to decide if they want to add IoT devices to enable smart capability or renovate the washroom to create a fluid IoT smart washroom design. The report would introduce an IoT smart washroom framework to help organizations design a cohesive preventive measure network for the daily maintenance routine. The framework is designed to help understand how to manage washroom cleanliness more efficiently and to provide guidance in achieving this goal. The leading result is eliminating potential viral outbreaks that could jeopardize the organization.

Keywords: IoT, smart washroom, public hygiene, cleanliness, virus outbreaks, safeguard

Procedia PDF Downloads 69
622 Synthesis of Tricalcium Phosphate Substituted with Magnesium Ions for Bone Regeneration

Authors: Andreia Cucuruz, Cristina Daniela Ghitulica, Georgeta Voicu, Cristina Busuioc

Abstract:

Ceramics based on calcium phosphates have lately increased attention for tissue engineering because they can be used as substitute bones or for bone regeneration since they mimic very well the nanostructure of tough bone tissue, but also because of other advantages such as a very good biocompatibility and osseointegration. This study aims the preparation and characterization of ceramic materials on the basis of TCP (Ca₃(PO₄)₂), within which calcium ions are substituted by magnesium ions (Mg²⁺) in order to improve the regenerative properties of these materials. TCP-Mg material was synthesized by chemical precipitation method using calcium oxide (CaO) and phosphoric acid (H₃PO₄) as precursors. The objective was to obtain powders with different concentrations of Mg in order to analyze the effect of magnesium ions on the physicochemical properties of phosphate ceramics and in vitro degradation in simulated biological fluid (SBF). Ceramic powders were characterized in vitro but also from the compositional and microstructural point of view. TCP_Mg powders were prepared through wet chemical method from calcium oxide (CaO), magnesium oxide nanopowder (MgO < 50 nm particle size (BET) Sigma Aldrich), phosphoric acid (H₃PO₄ - 85 wt.% in H₂O, 99.99% trace metals basis - Sigma Aldrich). In order to determine the quantities of raw materials, calculations were performed to obtain HAp with Ca/P ratio of 1.5.

Keywords: bone regeneration, magnesium substitution, tricalcium phosphate, tissue engineering

Procedia PDF Downloads 322
621 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids

Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan

Abstract:

Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.

Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers

Procedia PDF Downloads 374
620 Analysis of the Discursive Dynamics of Preservice Physics Teachers in a Context of Curricular Innovation

Authors: M. A. Barros, M. V. Barros

Abstract:

The aim of this work is to analyze the discursive dynamics of preservice teachers during the implementation of a didactic sequence on topics of Quantum Mechanics for High School. Our research methodology was qualitative, case study type, in which we selected two prospective teachers on the Physics Teacher Training Course of the Sao Carlos Institute of Physics, at the University of Sao Paulo/Brazil. The set of modes of communication analyzed were the intentions and interventions of the teachers, the established communicative approach, the patterns and the contents of the interactions between teachers and students. Data were collected through video recording, interviews and questionnaires conducted before and after an 8 hour mini-course, which was offered to a group of 20 secondary students. As teaching strategy we used an active learning methodology, called: Peer Instruction. The episodes pointed out that both future teachers used interactive dialogic and authoritative communicative approaches to mediate the discussion between peers. In the interactive dialogic dimension the communication pattern was predominantly I-R-F (initiation-response-feedback), in which the future teachers assisted the students in the discussion by providing feedback to their initiations and contributing to the progress of the discussions between peers. Although the interactive dialogic dimension has been preferential during the use of the Peer Instruction method the authoritative communicative approach was also employed. In the authoritative dimension, future teachers used predominantly the type I-R-E (initiation-response-evaluation) communication pattern by asking the students several questions and leading them to the correct answer. Among the main implications the work contributes to the improvement of the practices of future teachers involved in applying active learning methodologies in classroom by identifying the types of communicative approaches and communication patterns used, as well as researches on curriculum innovation in physics in high school.

Keywords: curricular innovation, high school, physics teaching, discursive dynamics

Procedia PDF Downloads 158
619 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 496
618 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels

Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan

Abstract:

A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.

Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media

Procedia PDF Downloads 158
617 A Conceptualization of the Relationship between Frontline Service Robots and Humans in Service Encounters and the Effect on Well-Being

Authors: D. Berg, N. Hartley, L. Nasr

Abstract:

This paper presents a conceptual model of human-robot interaction within service encounters and the effect on the well-being of both consumers and service providers. In this paper, service providers are those employees who work alongside frontline service robots. The significance of this paper lies in the knowledge created which outlines how frontline service robots can be effectively utilized in service encounters for the benefit of organizations and society as a whole. As this paper is conceptual in nature, the main methodologies employed are theoretical, namely problematization and theory building. The significance of this paper is underpinned by the shift of service robots from manufacturing plants and factory floors to consumer-facing service environments. This service environment places robots in direct contact with frontline employees and consumers creating a hybrid workplace where humans work alongside service robots. This change from back-end to front-end roles may have implications not only on the physical environment, servicescape, design, and strategy of service offerings and encounters but also on the human parties of the service encounter itself. Questions such as ‘how are frontline service robots impacting and changing the service encounter?’ and ‘what effect are such changes having on the well-being of the human actors in a service encounter?’ spring to mind. These questions form the research question of this paper. To truly understand social service robots, an interdisciplinary perspective is required. Besides understanding the function, system, design or mechanics of a service robot, it is also necessary to understand human-robot interaction. However not simply human-robot interaction, but particularly what happens when such robots are placed in commercial settings and when human-robot interaction becomes consumer-robot interaction and employee-robot interaction? A service robot in this paper is characterized by two main factors; its social characteristics and the consumer-facing environment within which it operates. The conceptual framework presented in this paper contributes to interdisciplinary discussions surrounding social robotics, service, and technology’s impact on consumer and service provider well-being, and hopes that such knowledge will help improve services, as well as the prosperity and well-being of society.

Keywords: frontline service robots, human-robot interaction, service encounters, well-being

Procedia PDF Downloads 187
616 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 89
615 In vitro Disaggregation and Dissolution of Four IR Lamotrigine Solid Dosage Forms

Authors: Ilaria Manca, Ilaria Manca, Francesca Pettinau, Ignazia Mocci, Elisabetta M. Usai, Barbara Pittau

Abstract:

Lamotrigine is a phenyltriazine used in the treatment of epilepsy and bipolar disorder type I. The purpose of this study was to test and compare various solid forms of immediate release (IR) lamotrigine products, at different strenghts, in order to study their disaggregation and dissolution behavior. IR products are designed to release their active substance promptly after administration. Concentration of hydrochloric acid in gastric juice is about 0.1-0.001 M, so FDA (Food and Drug Administration) recommends, for lamotrigine regular tablets, dissolution tests in HCl 0.1 M.Toinvestigate the pH dependency of drug release in the entire gastrointestinal tract, we worked at two additional media with different pH values (4.5 and 6.8), that reflect conditions in it. To afford acceptable dissolution rates, tablets must disintegrate. Disaggregation of constituent particles increases the surface area and substantially increases the dissolution rate. For this reason availability of an active substance from tablets depends on its ability to disintegrate fast in dissolution media. pH of gastrointestinal fluid affects drug absorption by conditioning its solubility and dissolution, but also tablet disintegration may be influenced by it. To obtain information about the quantitative relationship between different mixture components, Nuclear Magnetic Resonance (NMR) spectroscopy was used. We also investigate tablet hardness. The investigation carried out confirms pH 1.2 as the ideal environment for the immediate availability of the active substance.

Keywords: dissolution, disaggregation, Lamotrigine, bioequivalence

Procedia PDF Downloads 432
614 Re-Imagining and De-Constructing the Global Security Architecture

Authors: Smita Singh

Abstract:

The paper develops a critical framework to the hegemonic discourses resorted to by the dominant powers in the global security architecture. Within this framework, security is viewed as a discourse through which identities and threats are represented and produced to legitimize the security concerns of few at the cost of others. International security have long been driven and dominated by power relations. Since the end of the Cold War, the global transformations have triggered contestations to the idea of security at both theoretical and practical level. These widening and deepening of the concept of security have challenged the existing power hierarchies at the theoretical level but not altered the substance and actors defining it. When discourses are introduced into security studies, several critical questions erupt: how has power shaped security policies of the globe through language? How does one understand the meanings and impact of those discourses? Who decides the agenda, rules, players and outliers of the security? Language as a symbolic system and form of power is fluid and not fixed. Over the years the dominant Western powers, led by the United States of America have employed various discursive practices such as humanitarian intervention, responsibility to protect, non proliferation, human rights, war on terror and so on to reorient the constitution of identities and interests and hence the policies that need to be adopted for its actualization. These power relations are illustrated in this paper through the narratives used in the nonproliferation regime. The hierarchical security dynamics is a manifestation of the global power relations driven by many factors including discourses.

Keywords: hegemonic discourse, global security, non-proliferation regime, power politics

Procedia PDF Downloads 296
613 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 352
612 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles

Authors: Zhao Bo

Abstract:

The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.

Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading

Procedia PDF Downloads 218
611 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 67
610 Deconstruction of Gender Stereotypes through Fashion

Authors: Nihan Akdemir

Abstract:

This research aims to investigate the role of fashion in the context of the deconstruction of gender stereotypes. Expectation of society and culture related to the biological structure of the individual corresponds to the gender. At this point there are some unseen rules which are given to person even from his/her childhoods according to the sex and gender, are called stereotypes. With basic example, girls should wear pink, and the boys should wear blue. Or boys do not wear skirt and the woman must behave like a woman. There are also many many stereotypes like them. But the clothing style the individual uses to express his or her gender identity may not match the expectations of the community and society. In the context of big role of the clothing, these stereotypes could be deconstructed because clothes are the visible expression of gender identity of the person. And fashion is a big part of this structure because fashion is a pioneer of what people wear in other words fashion tells to people what should they wear this season. Nowadays fashion has also meant about expressing identity independent of whether you were born male or female. Many fashion brands prepare their collections in the concept of ‘gender fluid’ by deconstructions. It means that fashion is opening the roads for being more free about the gender identity. The representations of gender fluidity through fashion help bring a sense of normality to people who are trying to find the self-confidence to express who they want to be. Maybe the voice of the streets carries this point to the catwalks firstly, and then it becomes a trend. All these items have been explained with visual images and supported by the literature investigations. And the results are showed that the numbers of collections about it are increasing and fashion sector takes this issue into consideration. And this new approach reached to the streets.

Keywords: fashion, gender identity, gender stereotypes, trend

Procedia PDF Downloads 444
609 Development of Cationic Gelatin Nanoparticles as an Antigen-Carrier for Mucosal Immunization

Authors: Ping-Lun Jiang, Hung-Jun Lin, Shen-Fu Lin, Mei-Yin Chien, Ting-Wei Li, Chun-Han Lin, Der-Zen Liu

Abstract:

Mucosal vaccine induces both mucosal (secretory IgA) and systemic immune responses and it is considered an ideal vaccination strategy for prevention of infectious diseases. One important point to be considered in mucosal vaccination is effective antigen delivery system which can manage effective delivery of antigen to antigen-presenting cells (APCs) of mucosal. In the present study, cationic gelatin nanoparticles were prepared as ideal carriers for more efficient antigen delivery. The average diameter of cationic gelatin nanoparticle was approximate 190 nm, and the zeta potential was about +45 mV, then ovalbumin (OVA) was physically absorbed onto cationic gelatin nanoparticle. The OVA absorption rate was near 95% the zeta potential was about +20 mV. We show that cationic gelatin nanoparticle effectively facilitated antigen uptake by mice bone marrow-derived dendritic cells (mBMDCs) and RAW264.7 cells and induced higher levels of pro-inflammatory cytokines. C57BL/6 mice twice immunized intranasally with OVA-absorbed cationic gelatin nanoparticle induced high levels of OVA-specific IgG in the serum and IgA in their in the nasal and lung wash fluid. These results indicate that nasal administration of cationic gelatin nanoparticles induced both mucosal and systemic immune responses and cationic gelatin nanoparticles might be a potential antigen delivery carrier for further clinical applications.

Keywords: antigen delivery, antigen-presenting cells, gelatin nanoparticle, mucosal vaccine

Procedia PDF Downloads 335
608 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 294
607 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons

Authors: Su Ying-Ming

Abstract:

High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.

Keywords: urban ventilation path, ventilation efficiency indices, CFD, building layout

Procedia PDF Downloads 369
606 Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces

Authors: Dong Il Shim, Geehong Choi, Donghwi Lee, Namkyu Lee, Hyung Hee Cho

Abstract:

Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces.

Keywords: boiling heat transfer, wettability, critical heat flux, heat transfer coefficient

Procedia PDF Downloads 308