Search results for: electron field emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11537

Search results for: electron field emission

9677 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 236
9676 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.

Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach

Procedia PDF Downloads 216
9675 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 70
9674 PDMS-Free Microfluidic Chips Fabrication and Utilisation for Pulsed Electric Fields Applications

Authors: Arunas Stirke, Neringa Bakute, Gatis Mozolevskis

Abstract:

A technology of microfluidics is an emerging tool in the field of biology, medicine and chemistry. Microfluidic device is also known as ‘lab-on-a-chip’ technology [1]. In moving from macro- to microscale, there is unprecedented control over spatial and temporal gradients and patterns that cannot be captured in conventional Petri dishes and well plates [2]. However, there is not a single standard microfluidic chip designated for all purposes – every different field of studies needs a specific microchip with certain geometries, inlet/outlet, channel depth and other parameters to precisely regulate the required function. Since our group is studying an effect of pulsed electric field (PEF) to the cells, we have manufactured a microfluidic chip designated for high-throughput electroporation of cells. In our microchip, a cell culture chamber is divided into two parallel channels by a membrane, meanwhile electrodes for electroporation are attached to the wall of the channels. Both microchannels have their own inlet and outlet, enabling injection of transfection material separately. Our perspective is to perform electroporation of mammalian cells in two different ways: (1) plasmid and cells are injected in the same microchannel and (2) injected into separate microchannels. Moreover, oxygen and pH sensors are integrated on order to analyse cell viability parameters after PEF treatment.

Keywords: microfluidics, chip, fabrication, electroporation

Procedia PDF Downloads 88
9673 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: biodiesel, blending, characterisation, CI engine

Procedia PDF Downloads 167
9672 The Effect of Organizational Commitment and Burn out on Organizational Cynicism: A Field Study in the Healthcare Industry

Authors: Aykut Bedük, Kemalettin Eryeşil, Osman Eşmen

Abstract:

The aim of this study is to examine the relationship between organizational commitment which is defined as a strong belief in and acceptance of the organization’s goals and values, and burnout syndrome and organizational cynicism. Accordingly, a field research based on survey method was conducted on the employees of a health institution operating in the province of Konya. The findings of the research show that there is a positive statistically significant relationship between organizational cynicism and burnout while there is a negative statistically significant relationship between organizational commitment and burnout. Furthermore, it has been also realized that there is a negative and statistically significant relationship between organizational commitment and organizational cynicism.

Keywords: burnout, organizational commitment, organizational cynicism, healthcare management

Procedia PDF Downloads 282
9671 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 368
9670 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 325
9669 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.

Keywords: speed, Kriging, arterial, traffic volume

Procedia PDF Downloads 357
9668 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology

Authors: Surajit Chattopadhyay

Abstract:

Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.

Keywords: dark energy, holographic principle, modified gravity, reconstruction

Procedia PDF Downloads 417
9667 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 174
9666 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts

Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy

Abstract:

Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.

Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability

Procedia PDF Downloads 203
9665 Multi-Functional Metal Oxides as Gas Sensors, Photo-Catalysts and Bactericides

Authors: Koyar Rane

Abstract:

Nano- to submicron size particles of narrow particle size distribution of semi-conducting TiO₂, ZnO, NiO, CuO, Fe₂O₃ have been synthesized by novel hydrazine method and tested for their gas sensing, photocatalytic and bactericidal activities and the behavior found to be enhanced when the oxides in the thin film forms, that obtained in a specially built spray pyrolysis reactor. Hydrazine method is novel in the sense, say, the UV absorption edge of the white pigment grade wide band gap (~3.2eV) TiO₂ and ZnO shifted to the visible region turning into yellowish particles, indicating modification occurring the band structure. The absorption in the visible region makes these oxides visible light sensitive photocatalysis in degrading pollutants, especially the organic dyes which otherwise increase the chemical oxygen demand of the drinking water, enabling the process feasible not under the harsh energetic UV radiation regime. The electromagnetic radiations on irradiation produce electron-hole pairs Semiconductor + hν → e⁻ + h⁺ The electron-hole pairs thus produced form Reactive Oxygen Species, ROS, on the surface of the semiconductors, O₂(adsorbed)+e⁻ → O₂• - superoxide ion OH-(surface)+h⁺ →•OH - Hydroxyl radical The ROS attack the organic material and micro-organisms. Our antibacterial studies indicate the metal oxides control the Biological Oxygen Demand (BOD) of drinking water which had beyond the safe level normally found in the municipal supply. Metal oxides in the thin film form show overall enhanced properties and the films are reusable. The results of the photodegradation and antibactericidal studies are discussed. Gas sensing studies too have been done to find the versatility of the multifunctional metal oxides.

Keywords: hydrazine method, visible light sensitive, photo-degradation of dyes, water/airborne pollutant

Procedia PDF Downloads 163
9664 Importance of Field Hospitals in Trauma Management: An Experience from Nepal Earthquake

Authors: Krishna Gopal Lageju

Abstract:

On 25th April 2015, a 7.6 magnitude earthquake struck Gorkha district of Nepal, which resulted over 8,790 deaths and 22,300 injuries. In addition, almost one-third of the country’s healthcare service has been disrupted. A total of 1,211 health facilities became non-operational, due to 446 completely and other 765 partially damaged. Nearly 84 percent (375 out of 446) of the completely damaged health facilities are in the 14 most affected districts. As a result, the ability of health facilities to respond to health care needs has been harshly affected. In addition, 18 health workers lost their lives and 75 are injured, which added further challenges in the delivery of health services. Thus, to address the immediate health needs in the most devastated areas, Nepal Red Cross Society (NRCS) in coordination with IFRC and Nepal Government, 8 Field hospitals established with surgical capacities, where around 492 international Emergency Response Units (ERUs) Members are mobilized for 3 months period. More than 54,000 patients have been treated in the Red Cross operated field hospitals. Trauma cases accounted 9,180 (17%) of the total patients off which 1,285 (14%) are major surgical cases. Most of the case loads 44,830 (83%) are outpatients and 9,180 patients got inpatients service. Similarly, 112 births have been performed in the field hospitals. Inpatient mortality rate remained 1.5% (21 deaths), many of them are presented with critical injuries or illnesses. No outbreak has been seen during the ERU operation. Deployment of ERUs together with national health workers are very important to address the immediate health needs of the affected communities. This will ease for transition and handover of emergency service and equipments to local provider. Likewise, capacity building of local staff as on the job training on various clinical teachings would be another important issue to look at before phasing out such services.

Keywords: trauma management, critical injuries, earthquake, health

Procedia PDF Downloads 244
9663 Theoretical Analysis of the Solid State and Optical Characteristics of Calcium Sulpide Thin Film

Authors: Emmanuel Ifeanyi Ugwu

Abstract:

Calcium Sulphide which is one of Chalcogenide group of thin films has been analyzed in this work using a theoretical approach in which a scalar wave was propagated through the material thin film medium deposited on a glass substrate with the assumption that the dielectric medium has homogenous reference dielectric constant term, and a perturbed dielectric function, representing the deposited thin film medium on the surface of the glass substrate as represented in this work. These were substituted into a defined scalar wave equation that was solved first of all by transforming it into Volterra equation of second type and solved using the method of separation of variable on scalar wave and subsequently, Green’s function technique was introduced to obtain a model equation of wave propagating through the thin film that was invariably used in computing the propagated field, for different input wavelengths representing UV, Visible and Near-infrared regions of field considering the influence of the dielectric constants of the thin film on the propagating field. The results obtained were used in turn to compute the band gaps, solid state and optical properties of the thin film.

Keywords: scalar wave, dielectric constant, calcium sulphide, solid state, optical properties

Procedia PDF Downloads 123
9662 Results of the Field-and-Scientific Study in the Water Area of the Estuaries of the Major Rivers of the Black Sea and Sea Ports on the Territory of Georgia

Authors: Ana Gavardashvili

Abstract:

The field-and-scientific studies to evaluate the modern ecological state in the water area of the estuaries of the major water-abundant rivers in the coastal line of the Black Sea (Chorokhi, Kintrishi, Natanebi, Supsa, Khobistskali, Rioni and Enguri) and sea ports (Batumi, Poti) and sea terminals of the oil pipeline (Baku-Tbilisi-Supsa, Kulevi) were accomplished in the months of June and July of 2015. GPS coordinates and GIS programs were used to fix the areas of the estuaries of the above-listed rivers on a digital map, with their values varying within the limits of 0,861 and 20,390 km2. Water samples from the Black Sea were taken from the river estuaries and sea ports during the field works, with their statistical series of 125 points. The temperatures of air (t2) and water in the Black Sea (t1) were measured locally, and their relative value is (t1 /t2 ) = 0,69 – 0,92. 125 water samples taken from the study object in the Black Sea coastal line were subject to laboratory analysis, and it was established that the Black Sea acidity (pH) changes within the limits of 7,71 – 8,22 in the river estuaries and within 8,42 - 8,65 in the port water areas and at oil terminals. As for the Sea water salinity index (TDS), it changes within the limits of 6,15 – 12,67 in the river estuaries, and (TDS) = 11,80 – 13,67 in the port water areas and at oil terminals. By taking the gained data and climatic changes into account, by using the theories of reliability and risk at the following stage, the nature of the changes of the function of the Black Sea ecological parameters will be established.

Keywords: acidity, estuary, salinity, sea

Procedia PDF Downloads 290
9661 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 540
9660 Backstepping Sliding Mode Control

Authors: Othmane Boughazi, Abdelmadjid Boumedienne, Hachemi Glaoui

Abstract:

This work treats the modeling and simulation of non-linear system behavior of an induction motor using backstepping sliding mode control. First, the direct field oriented control IM is derived. Then, a sliding for direct field oriented control is proposed to compensate the uncertainties, which occur in the control.Finally, the study of Backstepping sliding controls strategy of the induction motor drive. Our non linear system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.

Keywords: induction motor, proportional-integral, sliding mode control, backstepping sliding mode control

Procedia PDF Downloads 489
9659 Vacancy-Driven Magnetism of GdMnO₃

Authors: Matúš Mihalik, Martin Vavra, Kornel Csach, Marián Mihalik

Abstract:

GdMnO₃ belongs to orthorhombically distorted, GdFeO₃-type family of perovskite compounds. These compounds are naturally vacant and the amount of vacancies depend on the sample preparation conditions. Our GdMnO₃ samples were prepared by float zone method and the vacancies were controlled using an air, Ar and O₂ preparation atmosphere. The highest amount of vacancies was found for sample prepared in Ar atmosphere, while the sample prepared in O₂ was observed to be almost vacancy-free. The magnetic measurements indicate that the preparation atmosphere has no impact on Néel temperature (TN ~ 42 K), however, it has strong impact on the incommensurate antiferromagnetic (IC) to canted A-type weak ferromagnetic (AWF) phase transition at T1: T1 = 23.4 K; 18 K and 6.7 K for samples prepared in Ar; air and O₂ atmosphere; respectively. The hysteresis loop measured at 2 K has a butterfly-type shape with the remnant magnetization (Mr) of 0.6 µB/f.u. for Ar and air sample, while Mr = 0.3 µB/f.u. for O₂ sample. The shape of the hysteresis loop depends on the preparation atmosphere in magnetic fields up to 1.5 T, but is independent for higher magnetic fields. The coercive field of less than 0.06 T and the maximum magnetic moment of 6 µB/f.u. at magnetic field µ0H = 7 T do not depend on the preparation atmosphere. All these findings indicate that only AWF phase of GdMnO₃ compound is directly affected by the vacancies in the system, while IC phase and the field induced ferroelectric phase are not affected.

Keywords: magnetism, perovskites, sample preparation, magnetic phase transition

Procedia PDF Downloads 118
9658 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System

Authors: Olayinka Oduwole, Steve Sheard

Abstract:

The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.

Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead

Procedia PDF Downloads 475
9657 High Injury Prevalence in Adolescent Field Hockey Players: Implications for Future Practice

Authors: Pillay J. D., D. De Wit, J. F. Ducray

Abstract:

Field hockey is a popular international sport which is played in more than 100 countries across the world. Due to the nature of hockey, players repeatedly perform a combination of forward flexion and rotational movements of the spine in order to strike the ball. These movements have been shown to increase the risk of pain and injury to the lumbar spine. The aim of this study was to determine the prevalence and incidence of low back pain (LBP) in male adolescent field hockey players and the characteristics of LBP in terms of location, chronicity, disability, and treatment sought, as well as its association with selected risk factors. A survey was conducted on 112 male adolescent field hockey players in the eThekwini Municipality of KwaZulu-Natal, South Africa. The questionnaire contained sections on the demographics of participants, general characteristics of participants, health and lifestyle characteristics, low back pain patterns, treatment of low back pain, and the level of disability associated with LBP. The data were statistically analysed using IBM SPSS version 25 with statistical significance set at p-value <0.05. Descriptive statistics such as mean and standard deviation were used to summarise responses to continuous variables as appropriate. Categorical variables were described using frequency tables. Associations between risk factors and low back pain were tested using Pearson’s chi-square test and t-tests as appropriate. A total of 68 questionnaires were completed for analysis (67% participation rate); the period prevalence of LBP was 63.2% (35.0%:beginning of the season, 32.4%:mid-season, 22.1%: end of season). Incidence was 38.2%. The most common location for LBP was the middle low back region (39.5%), and the most common duration of pain was a few hours (32.6%). Most participants (79.1%) did not classify their pain as a disability, and only 44.2% of participants received medical treatment for their LBP. An interesting finding was the association between hydration and LBP (p = 0.050), i.e., those individuals who did not hydrate frequently during matches and training were significantly more likely to experience LBP. The results of this study, although limited to a select group of adolescents, showed a higher prevalence of LBP than that of previous studies. More importantly, even though most participants did not experience LBP classified as a disability, LBP still had a large impact on participants, as nearly half of the participants consulted with a medical professional for treatment. Need for the application of further strategies in the prevention and management of LBP in field hockey, such as adequate warm-up and cool-down, stretching exercises, rest between sessions, etc., are recommended as simple strategies to reduce LBP prevalence.

Keywords: adolescents, field hockey players, incidence, low back pain, prevalence, risk factors

Procedia PDF Downloads 63
9656 Landbody: Decolonizing U.S. Intercultural Communication

Authors: Aimee Carrillo Rowe

Abstract:

Drawing on theories of plurinationalism and Indigenous sovereignty, this essay argues for a “landbody” method of culture critique. This method analyzes the relationship between land and bodies in queer Xicana performances. The study finds that queer Xicana performances navigate complex relationships between settler and Indigenous positionalities. By shifting the focus in the field of U.S. intercultural communication from political struggles for inclusion within the settler nation-state to an interrogation of the land politics upon that underwrite sovereignty, the paper develops a decolonial, hemispheric approach to the field of intercultural communication.

Keywords: indigenous studies, settler colonial studies, critical ethnic studies, landbody, decolonization, Chicana feminism, queer Xicana performance

Procedia PDF Downloads 103
9655 Factors of Scientific Rise and Fall of the Islamic Empire

Authors: Saeed Seyed Agha Banihashemi

Abstract:

The history of mathematics as one of the trends in the field of mathematics has special importance and in most of the important universities of the world, this trend in the field of mathematics is taught and researched. In teaching the history of mathematics and mathematics books, special attention is paid to the scientific works of the four Greek-Indian-Islamic and European civilizations, although the history of mathematics in China and East Asia is a special category due to its ancient civilization. In this article, while examining mathematics in the Islamic empire, the factors of the scientific rise and fall of the Islamic empire, which can include mathematics, have been studied. In this article, according to my own research and other sources mentioned s, It is believed the factors of scientific rise and fall in the Islamic Empire.

Keywords: history of mathematics, alkandi, cryptology, manuscripts

Procedia PDF Downloads 118
9654 Comprehensive Study of X-Ray Emission by APF Plasma Focus Device

Authors: M. Habibi

Abstract:

The time-resolved studies of soft and hard X-ray were carried out over a wide range of argon pressures by employing an array of eight filtered photo PIN diodes and a scintillation detector, simultaneously. In 50% of the discharges, the soft X-ray is seen to be emitted in short multiple pulses corresponding to different compression, whereas it is a single pulse for hard X-rays corresponding to only the first strong compression. It should be stated that multiple compressions dominantly occur at low pressures and high pressures are mostly in the single compression regime. In 43% of the discharges, at all pressures except for optimum pressure, the first period is characterized by two or more sharp peaks.The X–ray signal intensity during the second and subsequent compressions is much smaller than the first compression.

Keywords: plasma focus device, SXR, HXR, Pin-diode, argon plasma

Procedia PDF Downloads 410
9653 Integral Domains and Their Algebras: Topological Aspects

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element.

Keywords: integral domains, Alexandroff topology, prime spectrum of a ring, valuation domains

Procedia PDF Downloads 134
9652 The Characteristics of Porcine Immune Synapse via Flow Cytometry and Transmission Electron Microscope

Authors: Ann Ying-An Chen, Yi-Lun Tsai, Hso-Chi Chaung

Abstract:

An understanding of pathogens and the immune system has played an utmost important role in agricultural research for the development of vaccinations. The immunological synapse, cell to cell interaction play a crucial role in triggering the body's immune system, such as activation between antigen-presenting cells (APCs) and different subsets of T-cell. If these interactions are regulated appropriately, the host has the ability to defend itself against a wide spectrum of infectious pathogens. The aim of this study is to establish and to characterize a porcine immune synapse system by co-culturing T cell/APC. In this study, blood samples were collected from specific-pathogen-free piglets, and peripheral blood mononuclear cells (PBMC) were separated by using Ficoll-Pague. The PBMC were then stained with CD4 (FITC) and CD25 (PE) antibodies. Different subsets of T cells sorted by fluorescence-activated cell sorting flow cytometer were co-cultured for 24 hrs with alveolar macrophages, and the profiles of cytokine secretion and mRNA transcription levels of Toll-like receptors were examined after. Results showed that the three stages of immune synapse were clearly visible and identified under both transmission and scanning electron microscope (TEM and SEM). The significant interaction differences in toll-like receptor expressions within the co-cultured cell system were observed. The TLR7 mRNA expressions in CD4+CD25- cells were lower than those in CD4+CD25+ and CD4 -CD25+. Interestingly, the IL-10 production levels in CD4+CD25- cells (7.732 pg/mL) were significantly higher than those of CD4+CD25+ (2.636 pg/mL) and CD4 -CD25+ (2.48 pg/mL). These findings demonstrated that a clear understanding of the porcine immune synapse system can contribute greatly for further investigations on the mechanism of T-cell activation, which can benefit in the discovery of potential adjuvant candidate or effective antigen epitopes in the development of vaccinations with high efficacy.

Keywords: antigen-presenting cells, immune synapse, pig, T subsets, toll-like receptor

Procedia PDF Downloads 131
9651 Thermoluminescence Investigations of Tl2Ga2Se3S Layered Single Crystals

Authors: Serdar Delice, Mehmet Isik, Nizami Hasanli, Kadir Goksen

Abstract:

Researchers have donated great interest to ternary and quaternary semiconductor compounds especially with the improvement of the optoelectronic technology. The quaternary compound Tl2Ga2Se3S which was grown by Bridgman method carries the properties of ternary thallium chalcogenides group of semiconductors with layered structure. This compound can be formed from TlGaSe2 crystals replacing the one quarter of selenium atom by sulfur atom. Although Tl2Ga2Se3S crystals are not intentionally doped, some unintended defect types such as point defects, dislocations and stacking faults can occur during growth processes of crystals. These defects can cause undesirable problems in semiconductor materials especially produced for optoelectronic technology. Defects of various types in the semiconductor devices like LEDs and field effect transistor may act as a non-radiative or scattering center in electron transport. Also, quick recombination of holes with electrons without any energy transfer between charge carriers can occur due to the existence of defects. Therefore, the characterization of defects may help the researchers working in this field to produce high quality devices. Thermoluminescence (TL) is an effective experimental method to determine the kinetic parameters of trap centers due to defects in crystals. In this method, the sample is illuminated at low temperature by a light whose energy is bigger than the band gap of studied sample. Thus, charge carriers in the valence band are excited to delocalized band. Then, the charge carriers excited into conduction band are trapped. The trapped charge carriers are released by heating the sample gradually and these carriers then recombine with the opposite carriers at the recombination center. By this way, some luminescence is emitted from the samples. The emitted luminescence is converted to pulses by using an experimental setup controlled by computer program and TL spectrum is obtained. Defect characterization of Tl2Ga2Se3S single crystals has been performed by TL measurements at low temperatures between 10 and 300 K with various heating rate ranging from 0.6 to 1.0 K/s. The TL signal due to the luminescence from trap centers revealed one glow peak having maximum temperature of 36 K. Curve fitting and various heating rate methods were used for the analysis of the glow curve. The activation energy of 13 meV was found by the application of curve fitting method. This practical method established also that the trap center exhibits the characteristics of mixed (general) kinetic order. In addition, various heating rate analysis gave a compatible result (13 meV) with curve fitting as the temperature lag effect was taken into consideration. Since the studied crystals were not intentionally doped, these centers are thought to originate from stacking faults, which are quite possible in Tl2Ga2Se3S due to the weakness of the van der Waals forces between the layers. Distribution of traps was also investigated using an experimental method. A quasi-continuous distribution was attributed to the determined trap centers.

Keywords: chalcogenides, defects, thermoluminescence, trap centers

Procedia PDF Downloads 283
9650 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 146
9649 Synthesis and Characterization of Heterogeneous Silver Nanoparticles for Protection of Ancient Egyptian Artifacts from Microbial Deterioration

Authors: Mohamed Abd Elfattah Ibraheem Elghrbawy

Abstract:

Biodeterioration of cultural heritage is a complex process which is caused by the interaction of many physical, chemical and biological agents; the growth of microorganisms can cause staining, cracking, powdering, disfigurement and displacement of monuments material, which leads to the permanent loss of monuments material. Organisms causing biodeterioration on monuments have usually been controlled by chemical products (biocides). In order to overcome the impact of biocides on the environment, human health and monument substrates, alternative tools such as antimicrobial agents from natural products can be used for monuments conservation and protection. The problem is how to formulate antibacterial agents with high efficiency and low toxicity. Various types of biodegradable metal nanoparticles (MNPs) have many applications in plant extract delivery. So, Nano-encapsulation of metal and natural antimicrobial agents using polymers such as chitosan increases their efficacy, specificity and targeting ability. Green synthesis and characterization of metal nanoparticles such as silver with natural products extracted from some plants having antimicrobial properties, using the ecofriendly method one pot synthesis. Encapsulation of the new synthesized mixture using some biopolymers such as chitosan nanoparticles. The dispersions and homogeneity of the antimicrobial heterogeneous metal nanoparticles encapsulated by biopolymers will be characterized and confirmed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Zeta seizer. The effect of the antimicrobial biopolymer metal nano-formulations on normal human cell lines will be investigated to evaluate the environmental safety of these formulations. The antimicrobial toxic activity of the biopolymeric antimicrobial metal nanoparticles formulations will be will be investigated to evaluate their efficiency towards different pathogenic bacteria and fungi.

Keywords: antimicrobial, biodeterioration, chitosan, cultural heritage, silver

Procedia PDF Downloads 85
9648 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: hiden markov model, believe desire intention, neural activation, simulation

Procedia PDF Downloads 378