Search results for: data security assurance
25150 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link
Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito
Abstract:
Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.Keywords: arms control, arms race, global security, GMD, ICBM, missile defense, proliferation
Procedia PDF Downloads 14325149 Organic Farming for Sustainable Production of Some Promising Halophytic Species in Saline Environment
Authors: Medhat Tawfik, Ezzat Abd El Lateef, Bahr Amany, Mohamed Magda
Abstract:
Applying organic farming systems in biosaline agriculture is unconventional approach for sustainable use of marginal soil and desert land for planting non-traditional halophytic crops such as Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens. These plants are highly salt tolerant C4 halophytic forage plants grown well in coastal salt marsh. These halophytic plant will take important place in the farming system, especially in the coastal areas and salt-affected land. We can call it environmentally smart crops because they ensure food security, contribute to energy security, guarantee environmental sustainability, and mitigate the negative impacts of climate change. Organic Agriculture is the most important and widely practiced agro-ecological farming system. It is claimed to be the most sustainable approach and long term adaptation strategy. It promotes soil fertility and diversity at all levels and makes soils less susceptible to erosion. It is also reported to be climate change resilience farming systems as it promotes the proper management of soil, water, biodiversity and local knowledge and provides producers with ecologically sound management decisions. A field experiment was carried out at the Model Farm of National Research Centre, El Tour, South Sinai to study the impact of (Mycorrhiza 1kg/fed., charcoal 4 tons/fed., chicken manure 5 tons/fed., in addition to control treatment) on some growth characters, photosynthetic pigments content, and some physiological aspects i.e. prolind and soluble carbohydrates content, succulence and osmotic pressure values, as well as nutritive values i.e. Crude fat (CF), Acid detergent fiber (ADF), Neutral detergent fiber (NDF), Ether extract (EE) and Nitrogen-free extract (NFE) of five halophytic plant species (Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens). Our results showed that organic fertilizer treatment enhanced all the previous character as compared with control with superiority to chicken manure over the other treatments.Keywords: organic agriculture, halophytic plants, saline environment, water security
Procedia PDF Downloads 22525148 Mobile WiMAX Network based Wireless Communication on Rail: An Analysis
Authors: Vinod Kumar Jatav, Dr. Vrijendra Singh
Abstract:
WiMAX is an emerging wireless technology designed by WiMAX forum. WiMAX technology delivers broadband internet access with QoS, mobility and robust security. WiMAX is among the prominent mobile broadband wireless technology which laid the foundation for the next generation networks (NGN). The next-generation communication system for railway should facilitate high level network availability, fast mobility for high speed trains with reliability, high handover rate, the firmness of train operations, and high QoS. The system should also be capable to provide various railway services by transmitting big data efficiently. One of the most promising technologies for the next generation railway wireless communication is Mobile WiMAX. This paper analyses some of the network architectures for railway wireless communication and considers the elementary concepts to facilitate the users with broadband internet access on trains. The paper aims to recognize the suitability of Mobile WiMAX technology for the special requirements of broadband internet facilities and wireless telecommunication services of Railways.Keywords: Broadband internet, IEEE 802.16e, mobile WiMAX, Railway wireless communication
Procedia PDF Downloads 52425147 WiFi Data Offloading: Bundling Method in a Canvas Business Model
Authors: Majid Mokhtarnia, Alireza Amini
Abstract:
Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.Keywords: bundling, canvas business model, telecommunication, WiFi data offloading
Procedia PDF Downloads 20025146 Distributed Perceptually Important Point Identification for Time Series Data Mining
Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung
Abstract:
In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining
Procedia PDF Downloads 43425145 Accuracy of Computed Tomography Dose Monitor Values: A Multicentric Study in India
Authors: Adhimoolam Saravana Kumar, K. N. Govindarajan, B. Devanand, R. Rajakumar
Abstract:
The quality of Computed Tomography (CT) procedures has improved in recent years due to technological developments and increased diagnostic ability of CT scanners. Due to the fact that CT doses are the peak among diagnostic radiology practices, it is of great significance to be aware of patient’s CT radiation dose whenever a CT examination is preferred. CT radiation dose delivered to patients in the form of volume CT dose index (CTDIvol) values, is displayed on scanner monitors at the end of each examination and it is an important fact to assure that this information is accurate. The objective of this study was to estimate the CTDIvol values for great number of patients during the most frequent CT examinations, to study the comparison between CT dose monitor values and measured ones, as well as to highlight the fluctuation of CTDIvol values for the same CT examination at different centres and scanner models. The output CT dose indices measurements were carried out on single and multislice scanners for available kV, 5 mm slice thickness, 100 mA and FOV combination used. The 100 CT scanners were involved in this study. Data with regard to 15,000 examinations in patients, who underwent routine head, chest and abdomen CT were collected using a questionnaire sent to a large number of hospitals. Out of the 15,000 examinations, 5000 were head CT examinations, 5000 were chest CT examinations and 5000 were abdominal CT examinations. Comprehensive quality assurance (QA) was performed for all the machines involved in this work. Followed by QA, CT phantom dose measurements were carried out in South India using actual scanning parameters used clinically by the hospitals. From this study, we have measured the mean divergence between the measured and displayed CTDIvol values were 5.2, 8.4, and -5.7 for selected head, chest and abdomen procedures for protocols as mentioned above, respectively. Thus, this investigation revealed an observable change in CT practices, with a much wider range of studies being performed currently in South India. This reflects the improved capacity of CT scanners to scan longer scan lengths and at finer resolutions as permitted by helical and multislice technology. Also, some of the CT scanners have used smaller slice thickness for routine CT procedures to achieve better resolution and image quality. It leads to an increase in the patient radiation dose as well as the measured CTDIv, so it is suggested that such CT scanners should select appropriate slice thickness and scanning parameters in order to reduce the patient dose. If these routine scan parameters for head, chest and abdomen procedures are optimized than the dose indices would be optimal and lead to the lowering of the CT doses. In South Indian region all the CT machines were routinely tested for QA once in a year as per AERB requirements.Keywords: CT dose index, weighted CTDI, volumetric CTDI, radiation dose
Procedia PDF Downloads 25725144 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12325143 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 14225142 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 34925141 Evaluating The Effects of Fundamental Analysis on Earnings Per Share Concept in Stock Valuation in the Zimbabwe Stock Exchange Market
Authors: Brian Basvi
Abstract:
A technique for analyzing a security's intrinsic value is called fundamental analysis. It involves looking at relevant financial, economic, and other qualitative and quantitative aspects. Earnings Per Share (EPS), a crucial metric in fundamental analysis, is calculated by dividing a company's net income by the total number of outstanding shares. With more than 70 listed businesses, the Zimbabwe Stock Exchange (ZSE) is the primary stock exchange in Zimbabwe. This study applies the EPS financial ratio and stock valuation techniques to historical stock data from 68 companies listed on the Zimbabwe Stock Exchange. According to a ZSE study, EPS significantly affects share prices that are listed on the market. The study's objective was to assess how fundamental analysis affected the idea of EPS in ZSE stock valuation. It concluded that EPS is an important consideration for investors when they make judgments about their investments. According to the study's findings, fundamental analysis is a useful tool for ZSE investors since it offers insightful information about a company's financial performance and aids in decision-making. Investors can have a better understanding of a company's underlying worth and prospects for future growth by looking into EPS and other basic aspects.Keywords: fundamental analysis, stock valuation, EPS, share pricing
Procedia PDF Downloads 4525140 Global Gender Differences in Job Satisfaction in the Hospitality Industry
Authors: Jonathan Hinton Westover, Maureen S. Andrade, Doug Miller
Abstract:
Research has been inconclusive in determining if men or women experience more job satisfaction. A global comparison examining extrinsic and intrinsic factors, work relations, and work-life balance determinants found few differences; however, work relations and work-life balance factors were more significant for male than female workers across occupations. The current study uses International Social Survey Program data representing 37 countries to explore gender differences in job satisfaction in the hospitality industry. Findings demonstrate that mean job satisfaction scores for females are lower across hospitality occupations except for hotel receptionists, housekeeping supervisors, and hotel cleaners. Regression results revealed additional differences such as the significance of co-worker relations, the negative impact of being discriminated against and harassed at work, working weekends, marital status, and supervisory status for women with autonomy, work stress, education, and employment relationship being more salient for men. Interesting work, work being useful to society, job security, pay, relations with management, and work interfering with family were significant for both males and females.Keywords: job satisfaction, gender, hospitality, global comparisons
Procedia PDF Downloads 13425139 Land-Use Transitions and Its Implications on Food Production Systems in Rural Landscape of Southwestern Ghana
Authors: Evelyn Asante Yeboah, Kwabena O. Asubonteng, Justice Camillus Mensah, Christine Furst
Abstract:
Smallholder-dominated mosaic landscapes in rural Africa are relevant for food production, biodiversity conservation, and climate regulation. Land-use transitions threaten the multifunctionality of such landscapes, especially the production capacity of arable lands resulting in food security challenges. Using land-cover maps derived from maximum likelihood classification of Landsat satellite images for the years 2002, 2015, and 2020, post-classification change detection, landscape metrics, and key informant interviews, the study assessed the implications of rubber plantation expansion and oil business development on the food production capacity of Ahanta West District, Ghana. The analysis reveals that settlement and rubber areas expanded by 5.82% and 10.33% of the landscape area, respectively, between 2002 and 2020. This increase translates into over twice their initial sizes (144% in settlement change and 101% in rubber change). Rubber plantation spread dominates the north and southwestern areas, whereas settlement is widespread in the eastern parts of the landscape. Rubber and settlement expanded at the expense of cropland, palm, and shrublands. Land-use transitions between cropland, palm, and shrubland were targeting each other, but the net loss in shrubland was higher (-17.27%). Isolation, subdivision, connectedness, and patch adjacency indices showed patch consolidation in the landscape configuration from 2002 to 2015 and patch fragmentation from 2015 to 2020. The study also found patches with consistent increasing connectivity in settlement areas indicating the influence of oil discovery developments and fragmentation tendencies in rubber, shrubland, cropland, and palm, indicating springing up of smaller rubber farms, the disappearance of shrubland, and splitting up of cropland and palm areas respectively. The results revealed a trend in land-use transitions in favor of smallholder rubber plantation expansion and oil discovery developments, which suggest serious implications on food production systems and poses a risk for food security and landscape multifunctional characteristics. To ensure sustainability in land uses, this paper recommends the enforcement of legislative instruments governing spatial planning and land use in Ghana as embedded in the 2016 land-use and spatial planning act.Keywords: food production systems, food security, Ghana’s west coast, land-use transitions, multifunctional rural landscapes
Procedia PDF Downloads 14525138 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network
Authors: Ashima Anurag Sharma
Abstract:
Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 52725137 Microarray Gene Expression Data Dimensionality Reduction Using PCA
Authors: Fuad M. Alkoot
Abstract:
Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.Keywords: PCA, gene expression, dimensionality reduction, classification, autism
Procedia PDF Downloads 56025136 Concepts of the Covid-19 Pandemic and the Implications of Vaccines for Health Security in Nigeria and Diasporas
Authors: Wisdom Robert Duruji
Abstract:
The outbreak of SARS-CoV-2 serotype infection was recorded in January 2020 in Wuhan City, Hubei Province, China. This study examines the concepts of the COVID-19 pandemic and the implications of vaccines for health security in Nigeria and Diasporas. It challenges the widely accepted assumption that the first case of coronavirus infection in Nigeria was recorded on February 27th, 2020, in Lagos. The study utilizes a range of research methods to achieve its objectives. These include the double-layered culture technique, literature review, website knowledge, Google search, news media information, academic journals, fieldwork, and on-site observations. These diverse methods allow for a comprehensive analysis of the concepts and the implications being studied. The study finds that coronavirus infection can be asymptomatic; it may be the antigenicity of the leukocytes (white blood cells), which produce immunogenic hapten or interferons (α, β and γ) that fight infectious parasites, was an immune response that prevented severe virulence in healthy individuals; the reason healthy patients of coronavirus infection in Nigeria naturally recovered after two to three weeks of on-set of infection and test negative. However, the fatality data from the Nigerian Centre for Disease Control (NCDC) is incorrect in this study’s finding; it perused that the fatalities were primarily due to underlying ailments, hunger, and malnutrition in debilitated, comorbid, or compromised patients. This study concluded that the kits and Polymerase Chain Reaction (PCR) machine currently used by the Nigerian Centre for Disease Control (NCDC) in testing and confirming COVID-19 in Nigeria is not ideal; it is programmed and negates separating the strain to its specific serotypes amongst its genera coronavirus, and family Coronaviridae; and might have confirmed patients with the symptoms of febrile caused by cough, catarrh, typhoid and malaria parasites as Covid-19 positive. Therefore, it is recommended that the coronavirus species infected in Nigeria are opportunistic parasites that thrive in human immuno-suppressed conditions like the herpesvirus; it cannot be eradicated by vaccines; the only virucides are interferons, immunoglobulins, and probably synthetic antiviral guanosine drugs like copegus or ribavirin. The findings emphasized that COVID-19 is not the primary pandemic disease in Nigeria; the lockdown was a mirage and not necessary; but rather, pandemic diseases in Nigeria are corruption, nepotism, hunger, and malnutrition caused by ineptitude in governance, religious dichotomy, and ethnic conflicts.Keywords: coronavirus, corruption, Covid-19 pandemic, lock-down, Nigeria, vaccine
Procedia PDF Downloads 6825135 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies
Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell
Abstract:
Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.Keywords: smart farming, Internet of Things, communication layer, cyber-attack
Procedia PDF Downloads 24225134 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7525133 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 9425132 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition
Authors: Arūnas Burinskas
Abstract:
Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition
Procedia PDF Downloads 13825131 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 17225130 Importance of New Policies of Process Management for Internet of Things Based on Forensic Investigation
Authors: Venkata Venugopal Rao Gudlur
Abstract:
The Proposed Policies referred to as “SOP”, on the Internet of Things (IoT) based Forensic Investigation into Process Management is the latest revolution to save time and quick solution for investigators. The forensic investigation process has been developed over many years from time to time it has been given the required information with no policies in investigation processes. This research reveals that the current IoT based forensic investigation into Process Management based is more connected to devices which is the latest revolution and policies. All future development in real-time information on gathering monitoring is evolved with smart sensor-based technologies connected directly to IoT. This paper present conceptual framework on process management. The smart devices are leading the way in terms of automated forensic models and frameworks established by different scholars. These models and frameworks were mostly focused on offering a roadmap for performing forensic operations with no policies in place. These initiatives would bring a tremendous benefit to process management and IoT forensic investigators proposing policies. The forensic investigation process may enhance more security and reduced data losses and vulnerabilities.Keywords: Internet of Things, Process Management, Forensic Investigation, M2M Framework
Procedia PDF Downloads 10225129 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29225128 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas
Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta
Abstract:
Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.Keywords: air quality, co-design, learning loops, noise pollution, urban living labs
Procedia PDF Downloads 36525127 ‘The Guilt Complex’: Assessing the Guilt of Youth Returning From Terrorist Groups in the Narratives of Justice Presentation on the Methodological Opportunities and Concerns in Operational Research
Authors: Arpita Mitra
Abstract:
The research explores the concept of ‘guilt’ as understood in relation to children and young individuals associated with terrorist groups who are exiting these groups and returning to civilian lives (‘young returnees’). The study explores young returnees’ guilt – in its psychological, legal, and sociological manifestations and how it contributes to experiences of reintegration and justice administration. Streamlining it further, the research question on assessing guilt engages with young adults – between 18 and 30 years – who were part of a terrorist organization during their formative years and have returned to civilian life. Overall, the findings of the said research are intended to contribute first-hand operational research to criminological literature as well as transitional justice mechanisms with regard to narratives on truth, justice, reparations and institutional reform/guarantees of non-recurrence. Particularly for this paper, the focus of the paper shall be on one aspect of this research, that is, on the added value of conducting operational research and the methodological challenges encountered during this process with regard to informed consent, data protection, mental health and security considerations for the respondents and researcher.Keywords: terrorism, reintegration, young returnees, criminology
Procedia PDF Downloads 5925126 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 12925125 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm
Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan
Abstract:
This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data
Procedia PDF Downloads 22225124 Socio-Economic Child’S Wellbeing Impasse in South Africa: Towards a Theory-Based Solution Model
Authors: Paulin Mbecke
Abstract:
Research Issue: Under economic constraints, socio-economic conditions of households worsen discounting child’s wellbeing to the bottom of many governments and households’ priority lists. In such situation, many governments fail to rebalance priorities in providing services such as education, housing and social security which are the prerequisites for the wellbeing of children. Consequently, many households struggle to respond to basic needs especially those of children. Although economic conditions play a crucial role in creating prosperity or poverty in households and therefore the wellbeing or misery for children; they are not the sole cause. Research Insights: The review of the South African Index of Multiple Deprivation and the South African Child Gauge establish the extent to which economic conditions impact on the wellbeing or misery of children. The analysis of social, cultural, environmental and structural theories demonstrates that non-economic factors contribute equally to the wellbeing or misery of children, yet, they are disregarded. In addition, the assessment of a child abuse database proves a weak correlation between economic factors (prosperity or poverty) and child’s wellbeing or misery. Theoretical Implications: Through critical social research theory and modelling, the paper proposes a Theory-Based Model that combines different factors to facilitate the understanding of child’s wellbeing or misery. Policy Implications: The proposed model assists in broad policy and decision making and reviews processes in promoting child’s wellbeing and in preventing, intervening and managing child’s misery with regard to education, housing, and social security.Keywords: children, child’s misery, child’s wellbeing, household’s despair, household’s prosperity
Procedia PDF Downloads 28425123 Reflecting Socio-Political Needs in Education Policy-Making: An Exploratory Study of Vietnam's Key Education Reforms (1945-2017)
Authors: Linh Tong
Abstract:
This paper aims to contribute to the understanding of key education reforms in Vietnam from 1945 to 2017, which reflects an evolution of socio-political needs of the Socialist Republic of Vietnam throughout this period. It explores the contextual conditions, motivations and ambitions influencing the formation of the education reforms in Vietnam. It also looks, from an applied practical perspective, at the influence of politics on education policy-making. The research methodology includes a content analysis of curriculum designs proposed by the Ministry of Education and Training, relevant resolutions and executive orders passed by the National Assembly and the Prime Minister, as well as interviews with experts and key stakeholders. The results point to a particular configuration of factors which have been inspiring the shape and substance of these reforms and which have most certainly influenced their implementation. This configuration evolves from the immediate needs to erase illiteracy and cultivate socialist economic model at the beginning of Vietnam’s independence in 1945-1975, to a renewed urge to adopt market-oriented economy in 1986 and cautiously communicate with the outside world until 2000s, and to currently a demonstrated desire to fully integrate into the global economy and tackle with rising concerns about national security (the South China Sea Dispute), environmental sustainability, construction of a knowledge economy, and a rule-of-law society. Overall, the paper attempts to map Vietnam’s socio-political needs with the changing sets of goals and expected outcomes in teaching and learning methodologies and practices as introduced in Vietnamese key education reforms.Keywords: curriculum development, knowledge society, national security, politics of education policy-making, Vietnam's education reforms
Procedia PDF Downloads 15225122 Unlocking Justice: Exploring the Power and Challenges of DNA Analysis in the Criminal Justice System
Authors: Sandhra M. Pillai
Abstract:
This article examines the relevance, difficulties, and potential applications of DNA analysis in the criminal justice system. A potent tool for connecting suspects to crime sites, clearing the innocent of wrongdoing, and resolving cold cases, DNA analysis has transformed forensic investigations. The scientific foundations of DNA analysis, including DNA extraction, sequencing, and statistical analysis, are covered in the article. To guarantee accurate and trustworthy findings, it also discusses the significance of quality assurance procedures, chain of custody, and DNA sample storage. DNA analysis has significantly advanced science, but it also brings up substantial moral and legal issues. To safeguard individual rights and uphold public confidence, privacy concerns, possible discrimination, and abuse of DNA information must be properly addressed. The paper also emphasises the effects of the criminal justice system on people and communities while highlighting the necessity of equity, openness, and fair access to DNA testing. The essay describes the obstacles and future directions for DNA analysis. It looks at cutting-edge technology like next-generation sequencing, which promises to make DNA analysis quicker and more affordable. To secure the appropriate and informed use of DNA evidence, it also emphasises the significance of multidisciplinary collaboration among scientists, law enforcement organisations, legal experts, and policymakers. In conclusion, DNA analysis has enormous potential for improving the course of criminal justice. We can exploit the potential of DNA technology while respecting the ideals of justice, fairness, and individual rights by navigating the ethical, legal, and societal issues and encouraging discussion and collaboration.Keywords: DNA analysis, DNA evidence, reliability, validity, legal frame, admissibility, ethical considerations, impact, future direction, challenges
Procedia PDF Downloads 6425121 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 394