Search results for: big data markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25793

Search results for: big data markets

23933 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
23932 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 598
23931 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
23930 Principal Component Analysis in Drug-Excipient Interactions

Authors: Farzad Khajavi

Abstract:

Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.

Keywords: API, compatibility, DSC, TG, interactions

Procedia PDF Downloads 133
23929 Activity Data Analysis for Status Classification Using Fitness Trackers

Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son

Abstract:

Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.

Keywords: activity status, fitness tracker, heart rate, steps

Procedia PDF Downloads 384
23928 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 47
23927 Does Level of Countries Corruption Affect Firms Working Capital Management?

Authors: Ebrahim Mansoori, Datin Joriah Muhammad

Abstract:

Recent studies in finance have focused on the effect of external variables on working capital management. This study investigates the effect of corruption indexes on firms' working capital management. A large data set that covers data from 2005 to 2013 from five ASEAN countries, namely, Malaysia, Indonesia, Singapore, Thailand, and the Philippines, was selected to investigate how the level of corruption in these countries affect working capital management. The results of panel data analysis include fixed effect estimations showed that a high level of countries' corruption indexes encourages managers to shorten the CCC length. Meanwhile, the managers reduce the level of investment in cash and cash equivalents when the levels of corruption indexes increase. Therefore, increasing the level of countries' corruption indexes encourages managers to select conservative working capital strategies by reducing the level of NLB.

Keywords: ASEAN, corruption indexes, panel data analysis, working capital management

Procedia PDF Downloads 438
23926 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future

Authors: Mazharuddin Syed Ahmed

Abstract:

This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.

Keywords: building information modelling, circular economy integration, digital twin, predictive analytics

Procedia PDF Downloads 43
23925 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 75
23924 Oil and Development: The Case of Kuwait

Authors: Abdulaziz Abdulrahman Albahar

Abstract:

This paper aims to answer the question of: is oil as a natural resource with all the wealth that it brings an economic burden? And how can resource curse be mitigated in such oil dependent nations? The case of Kuwait will be used as an example. The paper begins with an introduction of the resource curse and the Kuwaiti economy in general. Then there is an attempt to see that does the curse exist in the case for Kuwait. Furthermore, in the analysis section, an exploration on how the economy is dependent on oil and how oil is more of a burden if there is mismanagement is conducted. Later on, in answering on how to mitigate the problem of a resource curse, the case of Norway is explored. In concluding the paper, the results do show that oil rentals affects the Kuwaiti economy via 2 main channels, these are government spending that are mainly financed via oil rentals and exportation of oil based products. The surprising result was that government spending had a negative impact on GDP (gross domestic product) growth when oil rentals where instrumented on government expenditure, this is due to the issue of rent seeking in which government spending in Kuwait is financing things such as stimulus packages and raising the nominal wages. Yet, when comparing the magnitude of both oil exportation and government spending, the latter has a stronger effect on the GDP (gross domestic product) growth than the former. A resource curse doesn’t seem to exist in the case of Kuwait however, the characteristics of a curse do show in the form of rent seeking in the political sphere, the disruption of the traditional sectors like that of pearl trade and fishing markets. Yet, a curse doesn’t show due to the fact that the currency of the nation is very stable and hasn’t experienced any appreciation because of the fixed exchange rate system. Moreover, even if we can’t say that a curse exists, it is clear to see that the Kuwaiti economy is heading towards one. Whether or not it faces a resource curse will be based on how judicious the nation will be in exploiting their sovereign wealth fund and implementing diversification strategies to be less oil dependent like the vision “New Kuwait-2035” which has been underway since 2017.

Keywords: economic development, Kuwait, oil curse, dutch disease

Procedia PDF Downloads 76
23923 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection

Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi

Abstract:

The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.

Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure

Procedia PDF Downloads 280
23922 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC)

Procedia PDF Downloads 572
23921 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: clustering, force-directed, graph drawing, stock investment analysis

Procedia PDF Downloads 302
23920 Clinical and Laboratory Diagnosis of Malaria in Surat Thani, Southern Thailand

Authors: Manas Kotepui, Chatree Ratcha, Kwuntida Uthaisar

Abstract:

Malaria infection is still to be considered a major public health problem in Thailand. This study, a retrospective data of patients in Surat Thani Province, Southern Thailand during 2012-2015 was retrieved and analyzed. These data include demographic data, clinical characteristics and laboratory diagnosis. Statistical analyses were performed to demonstrate the frequency, proportion, data tendency, and group comparisons. Total of 395 malaria patients were found. Most of patients were male (253 cases, 64.1%). Most of patients (262 cases, 66.3%) were admitted at 6 am-11.59 am of the day. Three hundred and fifty-five patients (97.5%) were positive with P. falciparum. Hemoglobin, hematocrit, and MCHC between P. falciparum and P. vivax were significant different (P value<0.05).During 2012-2015, prevalence of malaria was highest in 2013. Neutrophils, lymphocytes, and monocytes were significantly changed among patients with fever ≤ 3 days compared with patients with fever >3 days. This information will guide to understanding pathogenesis and characteristic of malaria infection in Sothern Thailand.

Keywords: prevalence, malaria, Surat Thani, Thailand

Procedia PDF Downloads 276
23919 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 442
23918 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 31
23917 Data Security in Cloud Storage

Authors: Amir Rashid

Abstract:

Today is the world of innovation and Cloud Computing is becoming a day to day technology with every passing day offering remarkable services and features on the go with rapid elasticity. This platform took business computing into an innovative dimension where clients interact and operate through service provider web portals. Initially, the trust relationship between client and service provider remained a big question but with the invention of several cryptographic paradigms, it is becoming common in everyday business. This research work proposes a solution for building a cloud storage service with respect to Data Security addressing public cloud infrastructure where the trust relationship matters a lot between client and service provider. For the great satisfaction of client regarding high-end Data Security, this research paper propose a layer of cryptographic primitives combining several architectures in order to achieve the goal. A survey has been conducted to determine the benefits for such an architecture would provide to both clients/service providers and recent developments in cryptography specifically by cloud storage.

Keywords: data security in cloud computing, cloud storage architecture, cryptographic developments, token key

Procedia PDF Downloads 294
23916 Fuzzy Total Factor Productivity by Credibility Theory

Authors: Shivi Agarwal, Trilok Mathur

Abstract:

This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.

Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index

Procedia PDF Downloads 365
23915 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
23914 Pharmaceutical Equivalence of Some Injectable Gentamicin Generics Used in Veterinary Practice in Nigeria

Authors: F. A. Gberindyer, M. O.Abatan, A. B. Saba

Abstract:

Background: Gentamicin is an aminoglycoside antibiotic used in the treatment of infections caused by Gram-negative aerobic bacteria organisms in human and animals. In Nigeria, there are arrays of multisource generic versions of injectable gentamicin sulphate in the drug markets. There is a high prevalence of counterfeit and substandard drugs in the third world countries with consequent effect on their therapeutic efficacy and safety. Aim: The aim of this study was to investigate pharmaceutical equivalence of some of these generics used in veterinary practice in Nigeria. Methodology: About 20 generics of injectable gentamicin sulphate were sampled randomly across Nigeria but 15 were analyzed for identity and potency. Identity test was done using Fourier transform infra red spectroscopy and the spectral for each product compared with that of the USP reference standard for similarity. Microbiological assay using agar diffusion method with E. coli as a test organism on nutrient agar was employed and the respective diameters of bacterial inhibition zones obtained after 24 hour incubation at 37°C. The percent potency for each product was thereafter calculated and compared with the official specification. Result And Discussion: None of the generics is produced in any African country. About 75 % of the products are imported from China whereas 60 % of the veterinary generics are manufactured in Holland. Absorption spectra for the reference and test samples were similar. Percent potencies of all test products were within the official specification of 95-115 %. Nigeria relies solely on imported injectable gentamicin sulphate products. All sampled generic versions passed both identity and potency tests. Clinicians should ensure that drugs are used rationally since the converse could be contributing to the therapeutic failures reported for most of these generics. Bioequivalence study is recommended to ascertain their interchangeability when parenteral extra venous routes are indicated.

Keywords: generics, gentamicin, identity, multisource, potency

Procedia PDF Downloads 428
23913 Development of Automatic Laser Scanning Measurement Instrument

Authors: Chien-Hung Liu, Yu-Fen Chen

Abstract:

This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.

Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW

Procedia PDF Downloads 360
23912 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 421
23911 Failure Statistics Analysis of China’s Spacecraft in Full-Life

Authors: Xin-Yan Ji

Abstract:

The historical failures data of the spacecraft is very useful to improve the spacecraft design and the test philosophies and reduce the spacecraft flight risk. A study of spacecraft failures data was performed, which is the most comprehensive statistics of spacecrafts in China. 2593 on-orbit failures data and 1298 ground data that occurred on 150 spacecraft launched from 2000 to 2016 were identified and collected, which covered the navigation satellites, communication satellites, remote sensing deep space exploration manned spaceflight platforms. In this paper, the failures were analyzed to compare different spacecraft subsystem and estimate their impact on the mission, then the development of spacecraft in China was evaluated from design, software, workmanship, management, parts, and materials. Finally, the lessons learned from the past years show that electrical and mechanical failures are responsible for the largest parts, and the key solution to reduce in-orbit failures is improving design technology, enough redundancy, adequate space environment protection measures, and adequate ground testing.

Keywords: spacecraft anomalies, anomalies mechanism, failure cause, spacecraft testing

Procedia PDF Downloads 117
23910 Review on Future Economic Potential Stems from Global Electronic Waste Generation and Sustainable Recycling Practices.

Authors: Shamim Ahsan

Abstract:

Abstract Global digital advances associated with consumer’s strong inclination for the state of art digital technologies is causing overwhelming social and environmental challenges for global community. During recent years not only economic advances of electronic industries has taken place at steadfast rate, also the generation of e-waste outshined the growth of any other types of wastes. The estimated global e-waste volume is expected to reach 65.4 million tons annually by 2017. Formal recycling practices in developed countries are stemming economic liability, opening paths for illegal trafficking to developing countries. Informal crude management of large volume of e-waste is transforming into an emergent environmental and health challenge in. Contrariwise, in several studies formal and informal recycling of e-waste has also exhibited potentials for economic returns both in developed and developing countries. Some research on China illustrated that from large volume of e-wastes generation there are recycling potential in evolving from ∼16 (10−22) billion US$ in 2010, to an anticipated ∼73.4 (44.5−103.4) billion US$ by 2030. While in another study, researcher found from an economic analysis of 14 common categories of waste electric and electronic equipment (WEEE) the overall worth is calculated as €2.15 billion to European markets, with a potential rise to €3.67 billion as volumes increase. These economic returns and environmental protection approaches are feasible only when sustainable policy options are embraced with stricter regulatory mechanism. This study will critically review current researches to stipulate how global e-waste generation and sustainable e-waste recycling practices demonstrate future economic development potential in terms of both quantity and processing capacity, also triggering complex some environmental challenges.

Keywords: E-Waste, , Generation, , Economic Potential, Recycling

Procedia PDF Downloads 305
23909 Advances in Fiber Optic Technology for High-Speed Data Transmission

Authors: Salim Yusif

Abstract:

Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.

Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors

Procedia PDF Downloads 61
23908 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa

Authors: D. Mokatsanyane, J. Jansen Van Rensburg

Abstract:

This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.

Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX

Procedia PDF Downloads 174
23907 Data Science Inquiry to Manage Football Referees’ Careers

Authors: Iñaki Aliende, Tom Webb, Lorenzo Escot

Abstract:

There is a concern about the decrease in football referees globally. A study in Spain has analyzed the factors affecting a referee's career over the past 30 years through a survey of 758 referees. Results showed the impact of factors such as threats, education, initial vocation, and dependents on a referee's career. To improve the situation, the federation needs to provide better information, support young referees, monitor referees, and raise public awareness of violence toward referees. The study also formed a comprehensive model for federations to enhance their officiating policies by means of data-driven techniques that can serve other federations to improve referees' careers.

Keywords: data science, football referees, sport management, sport careers, survival analysis

Procedia PDF Downloads 99
23906 Towards the Management of Cybersecurity Threats in Organisations

Authors: O. A. Ajigini, E. N. Mwim

Abstract:

Cybersecurity is the protection of computers, programs, networks, and data from attack, damage, unauthorised, unintended access, change, or destruction. Organisations collect, process and store their confidential and sensitive information on computers and transmit this data across networks to other computers. Moreover, the advent of internet technologies has led to various cyberattacks resulting in dangerous consequences for organisations. Therefore, with the increase in the volume and sophistication of cyberattacks, there is a need to develop models and make recommendations for the management of cybersecurity threats in organisations. This paper reports on various threats that cause malicious damage to organisations in cyberspace and provides measures on how these threats can be eliminated or reduced. The paper explores various aspects of protection measures against cybersecurity threats such as handling of sensitive data, network security, protection of information assets and cybersecurity awareness. The paper posits a model and recommendations on how to manage cybersecurity threats in organisations effectively. The model and the recommendations can then be utilised by organisations to manage the threats affecting their cyberspace. The paper provides valuable information to assist organisations in managing their cybersecurity threats and hence protect their computers, programs, networks and data in cyberspace. The paper aims to assist organisations to protect their information assets and data from cyberthreats as part of the contributions toward community engagement.

Keywords: confidential information, cyberattacks, cybersecurity, cyberspace, sensitive information

Procedia PDF Downloads 259
23905 Programming without Code: An Approach and Environment to Conditions-On-Data Programming

Authors: Philippe Larvet

Abstract:

This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.

Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation

Procedia PDF Downloads 222
23904 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 244