Search results for: academic social networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13575

Search results for: academic social networks

11715 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 355
11714 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 42
11713 Signals Affecting Crowdfunding Success for Australian Social Enterprises

Authors: Mai Yen Nhi Doan, Viet Le, Chamindika Weerakoon

Abstract:

Social enterprises have emerged as sustainable organisations that deliver social achievement along with long-term financial advancement. However, recorded financial barriers have urged social enterprises to divert to other financing methods due to the misaligned ideology with traditional financing capitalists, in which crowdfunding can be a promising alternative. Previous studies in crowdfunding have inadequately addressed crowdfunding for social enterprises, with conflicting results due to the unsuitable analysis of signals in isolation rather than in combinations, using the data from platforms that do not support social enterprises. Extending the signalling theory, this study suggests that crowdfunding success results from the collaboration between costly and costless signals. The proposed conceptual framework enlightens the interaction between costly signals as “organisational information”, “social entrepreneur’s credibility,” and “third-party endorsement” and costless signals as various sub-signals under the “campaign preparedness” signal to achieve crowdfunding success. Using Qualitative Comparative Analysis, this study examined 45 crowdfunding campaigns run by Australian social enterprises on StartSomeGood and Chuffed. The analysis found that different combinations of costly and costless signals can lead to crowdfunding success, allowing social enterprises to adopt suitable combinations of signals to their context. Costless signal – campaign preparedness is fundamental for success, though different costless sub-signals under campaign preparedness can interact with different costly signals for the desired outcome. Third-party endorsement signal was found to be the necessary signal for crowdfunding success for Australian social enterprises.

Keywords: crowdfunding, qualitative comparative analysis (QCA), signalling theory, social enterprises

Procedia PDF Downloads 103
11712 Redefining Identity of People with Disabilities Based on Content Analysis of Instagram Accounts

Authors: Grzegorz Kubinski

Abstract:

The proposed paper is focused on forms of identity expression in people with disabilities (PWD) in the social networks like Instagram. Theoretical analysis widely proposes using the new media as an assistive tool for improving wellbeing and labour activities of PWD. This kind of use is definitely important and plays a key role in all social inclusion processes. However, Instagram is not a place where PWD only express their own problems, but in the opposite, allows them to construct a new definition of disability. In the paper, the problem how this different than a classical approach to disability is created by PWD will be discussed. This issue will be scrutinized mainly in two points. Firstly, the question of how disability is changed by other everyday activities, like fashion or sport, will be described. Secondly, and this could be seen as more important, the point how PWD redefining their bodies creating a different form of aesthetic will be presented. The paper is based on content analysis of Instagram accounts. About 20 accounts created by PWD were analyzed for 6 month period, taking into account elements like photos, comments and discussions. All those information were studied in relation to 'everyday life' category and 'aesthetic' category. Works by T. Siebers, L. J. Davis or R. McRuer were used as theoretical background. Conclusions and interpretations presented in the proposed paper show that the Internet can be used by PWD not only as prosthetic and assistive tools. PWD willingly use them as modes of expression their independence, agency and identity. The paper proposes that in further research this way of using the Internet communication by PWD should be taken into account as an important part of the understanding of disability.

Keywords: body, disability, identity, new media

Procedia PDF Downloads 138
11711 Entrepreneur Competencies: An Exploratory Study Applied to Educational Social Enterprise in South East Asia

Authors: D. Songpol, K. Taweesak, T. Sookyuen

Abstract:

A social enterprise is an organization that operates commercial business as a source of income with the aim of addressing social and environmental issues. Though it is clear that this kind of organization will benefit society and environment but in practice, it is found that most of social enterprises’ goals cannot be achieved. The most success factors of social enterprises usually rely on individual characteristics of entrepreneurs, especially in educational business. This study aims to find out the magnitude of influence from the components of entrepreneur competencies to social enterprises in education. There are developmental models of research demonstrating that knowledge, skills and attributes affect the success of social enterprises in term of sustainability, social opportunities and innovation leadership. The 5-scale questionnaire was used to collect data from the social entrepreneurs in education who operates in the South East Asian region of 135 samples and then processed by the methods of structural equation models. The results show that the competency of entrepreneurs in attributes has the greatest impact on the success of social enterprises while the skills and knowledge have respectively impact on the social enterprises’ success as well. The reason why attributes of entrepreneurs have the greatest impact on social enterprise success is because, social enterprise is an organization that does not motivate or provide attractive financial incentives to the entrepreneur. Entrepreneurs, who succeed in developing their organizations, therefore need attribute factor higher than normal entrepreneurs, especially those in education sector that have somewhat few human resources to operate their businesses. More importantly, attribute’s traits such as entrepreneurial passion, self-efficacy, entrepreneurial identity and, innovativeness and perseverance will significantly affect the ideology and tolerance of the entrepreneurs once facing the problem in doing business. In conclusion, the education social enterprise would be successful depending on the performance of the entrepreneurs which derives from higher attributes competency.

Keywords: education, entrepreneur competencies, social enterprise, South East Asia

Procedia PDF Downloads 156
11710 Contentious Politics during a Period of Transition to Democracy from an Authoritarian Regime: The Spanish Cycle of Protest of November 1975-December 1978

Authors: Juan Sanmartín Bastida

Abstract:

When a country experiences a period of transition from authoritarianism to democracy, involving an earlier process of political liberalization and a later process of democratization, a cycle of protest usually outbreaks, as there is a reciprocal influence between that kind of political change and the frequency and scale of social protest events. That is what happened in Spain during the first years of its transition to democracy from the Francoist authoritarian regime, roughly between November 1975 and December 1978. Thus, the object of this study is to show and explain how that cycle of protest started, developed, and finished in relation to such a political change, and offer specific information about the main features of all protest cycles: the social movements that arose during that period, the number of protest events by month, the forms of collective action that were utilized, the groups of challengers that engaged in contentious politics, the reaction of the authorities to the action and claims of those groups, etc. The study of this cycle of protest, using the primary sources and analytical tools that characterize the model of research of protest cycles, will make a contribution to the field of contentious politics and its phenomenon of cycles of contention, and more broadly to the political and social history of contemporary Spain. The cycle of protest and the process of political liberalization of the authoritarian regime began around the same time, but the first concluded long before the process of democratization was completed in 1982. The ascending phase of the cycle and therefore the process of liberalization started with the death of Francisco Franco and the proclamation of Juan Carlos I as King of Spain in November 1975; the peak of the cycle was around the first months of 1977; the descending phase started after the first general election of June 1977; and the level of protest stabilized in the last months of 1978, a year that finished with a referendum in which the Spanish people approved the current democratic constitution. It was then when we can consider that the cycle of protest came to an end. The primary sources are the news of protest events and social movements in the three main Spanish newspapers at the time, other written or audiovisual documents, and in-depth interviews; and the analytical tools are the political opportunities that encourage social protest, the available repertoire of contention, the organizations and networks that brought together people with the same claims and allowed them to engage in contentious politics, and the interpretative frames that justify, dignify and motivates their collective action. These are the main four factors that explain the beginning, development and ending of the cycle of protest, and therefore the accompanying social movements and events of collective action. Among those four factors, the political opportunities -their opening, exploitation, and closure-proved to be most decisive.

Keywords: contentious politics, cycles of protest, political opportunities, social movements, Spanish transition to democracy

Procedia PDF Downloads 138
11709 The International Field Placement: Experience in Vietnam Social Work International Placement Programme

Authors: Ngo Thi Thanh Mai, Nguyen Thu Ha, Frances Crawford

Abstract:

The demand for developing international social work field education is on the rise. Global foreign universities have considered international collaboration and cross-cultural perspective as an essential part of their social work training curriculum. International placement program at Faculty of Social Work (FSW), Hanoi National University of Education (HNUE) has met the need of international social work students, as well as the institutions involved in achieving social work professional social work knowledge in the Vietnamese context. This program has also lead to a long-term collaboration between HNUE and several global institutions in developing social work education, research and practice skill. This paper focuses on the benefits and challenges of students who involved in the global placement programme at Faculty of Social Work (FSW), Hanoi National University of Education (HNUE) and content of international field education provided to the international students based on the experience of the authors. Study results indicated that the participants have opportunity them to explore a new culture and social work system abroad especially in the Vietnamese context. However, there are still difficulties that international students have to face during different phases of the exchange process such as language and communication barriers, cultural value differences, insufficient support and supervision during placement. Basing on these results, the authors intend to propose some recommendations to enhance the programme activities such as pre-departure orientation, support and supervision during placement, cultural exchange and follow-up activities.

Keywords: social work education, social work, international placement, field placement, Vietnam

Procedia PDF Downloads 145
11708 The Role of Community Participation in the Socialization of the Child within the Saudi Family in Riyadh City

Authors: Ohoud Abdullatif Alshaiji

Abstract:

Child-rearing is considered as the most important family role and with the modern lifestyle and busy families social institutions has taken this role from the family to encourage the individuals active's role in the social life, this study aimed to acknowledge the contributions of the social institutions in child-rearing the Saudi children and to acknowledge The Role of the community's partnership in activating the social child-rearing for the Saudi children. The research main question was how much the community's partnership is actually participating in activating the process of the social development of the Saudi children. The importance of this study comes from the massive care that has been given from all over the world, children international organizations, and this research is focusing on the participating of five social organization in child-rearing the Saudi children. The study was limited on the mothers of the children who are enrolled in the government's kindergarten the tool that has been used was the Questionnaire, using the descriptive and analytical approach. The important role of the family in encouraging the social development for the Saudi child, and the results has shown the importance of the mosque in encouraging the good social behaviors. And the kindergarten role has shown after the mosque because of the changes that made most of the families relying on the educational institutions to help the child to adapt in a different cultures. To spread the community's partnership in all the social actions, to support and encourage the role of community's partnership in activating the process of the social development of the Saudi children, to minimize the difficulties and the provide the need to fully support the community's partnership.

Keywords: child-rearing, social development, acknowledge the contributions

Procedia PDF Downloads 345
11707 Visible Expression of Social Identity: The Clothing and Fashion

Authors: Nihan Akdemir

Abstract:

Clothes are more than a piece of fabric, and the most visible material item of the fashion symbol is the garment, which carries multiple and various meanings. The dynamism of the clothing symbol can carry open or closed codes depending on culture, gender, and social location. And each one can be the expression of social identity over ethnicity, religious beliefs, age, education and social class. Through observation of clothing styles over these items, the assumptions could be made about a person’s identity. A distinctive and typical style, form or character of the clothing such as ‘zoot suits’, ‘ao dai’, removes the garment from functional and ordinary element to the symbolic area. Clothing is an 'identification' tool that functions in determining the symbolic boundaries between people in a sense. And this paper includes the investigation of the relation between social identity and clothing and also fashion. And this relationship has been taken into consideration over the visual expression because even during the ancient times, the clothes were the basic and simple way of representing the identity and social classes. The visible expression of identity over clothing from Ancient Egypt to today’s clothing and fashion has been researched in this article. And all these items have been explained with visual images and supported by the literature investigations. Then the results have shown that every piece of clothing from fabric to coloring have visual significations about social identity.

Keywords: social identity, clothing, fashion, visual expression, visual signification

Procedia PDF Downloads 617
11706 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
11705 The Effect of Online Self-Assessment Diaries on Academic Achievement

Authors: Zi Yan

Abstract:

The pedagogical value of self-assessment is widely recognized. However, identifying effective methods to help students develop productive SA practices poses a significant challenge. Since most students do not acquire self-assessment skills intuitively, they need instruction and guidance. This study is a randomized controlled trial aiming to test the effect of online self-assessment diaries on students’ achievement scores compared to a control group. Two groups of secondary school students (N=59), recruited through convenience sampling, participated in the study. The two groups were randomly designated to one of two conditions: control (n = 31) and online self-assessment diary (n = 28). The participants completed a curriculum-specific pre-test and a baseline survey on the first week of the 10-week study, as well as completed a post-test and survey by the tenth week. The results showed that the SA diary intervention had a significantly positive effect on post-intervention language learning scores after controlling for baseline scores. The findings highlight the potential of self-assessment to enhance educational outcomes, emphasizing its significant implications for educational policies that promote the integration of SA strategies into pedagogical practices.

Keywords: self-assessment, online diary, academic achievement, experimenal study

Procedia PDF Downloads 52
11704 Women’s History: Perspectives and Challenges

Authors: Bennabhaktula Lavanya

Abstract:

The study of women, their societal roles, and their importance has been a subject of intense discussion and scholarly inquiry. Researchers have diligently endeavoured to understand the influence of women in the domains of society, economy, culture, and politics, as well as the broader ramifications for society. Women's history aims to improve existing historical accounts by analyzing political institutions, economic events, social frameworks, cultural trends, and primary sources that have historically underprivileged women. The extensive research undertaken has resulted in the formation and recognition of women's history as a valid and unique subject of study within history. The Present paper analyses the academic discipline of Women's History and investigates its changing patterns. Tries to address the challenge of transforming the prevailing historical tradition by using innovative methods and frameworks and analyses the interests, experiences, and achievements of women in order to recreate their perceptions and priorities. The paper also examines the principles of Women's History, Gender Studies, and Feminist History and varying perspectives on women.

Keywords: history, perspectives, research, women

Procedia PDF Downloads 46
11703 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 418
11702 The Right of Taiwanese Individuals with Mental Illnesses to Participate in Medical Decision-Making

Authors: Ying-Lun Tseng Chiu-Ying Chen

Abstract:

Taiwan's Mental Health Act was amended at the end of 2022; they added regulations regarding refusing compulsory treatment by patients with mental illnesses. In addition, not only by an examination committee, the judge must also assess the patient's need for compulsory treatment. Additionally, the maximum of compulsory hospitalization has been reduced from an unlimited period to a maximum of 60 days. They aim to promote the healthcare autonomy of individuals with mental illnesses in Taiwan and prevent their silenced voice in medical decision-making while they still possess rationality. Furthermore, they plan to use community support and social care networks to replace the current practice of compulsory treatment in Taiwan. This study uses qualitative research methodology, utilizing interview guidelines to inquire about the experiences of Taiwanese who have undergone compulsory hospitalization, compulsory community treatment, and compulsory medical care. The interviews aimed to explore their feelings when they were subjected to compulsory medical intervention, the inside of their illness, their opinions after treatments, and whether alternative medical interventions proposed by them were considered. Additionally, participants also asked about their personal life history and their support networks in their lives. We collected 12 Taiwanese who had experienced compulsory medical interventions and were interviewed 14 times. The findings indicated that participants still possessed rationality during the onset of their illness. However, when they have other treatments to replace compulsory medical, they sometimes diverge from those of the doctors and their families. Finally, doctors prefer their professional judgment and patients' families' option. Therefore, Taiwanese mental health patients' power of decision-making still needs to improve. Because this research uses qualitative research, so difficult to find participants, and the sample size rate was smaller than Taiwan's population, it may have biases in the analysis. So, Taiwan still has significant progress in enhancing the decision-making rights of participants in the study.

Keywords: medical decision making, compulsory treatment, medical ethics, mental health act

Procedia PDF Downloads 80
11701 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 122
11700 Investigating Problems and Social Support for Mothers of Poor Households

Authors: Niken Hartati

Abstract:

This study provides a description of the problem and sources of social support that given to 90 mothers from poor households. Data were collected using structured interviews with the three main questions: 1) what kind of problem in mothers daily life, 2) to whom mothers ask for help to overcome it and 3) the form of the assistances that provided. Furthermore, the data were analyzed using content analysis techniques were then coded and categorized. The results of the study illustrate the problems experienced by mothers of poor households in the form of: subsistence (37%), child care (27%), management of money and time (20%), housework (5%), bad place of living (5%), the main breadwinner (3%), and extra costs (3%). While the sources of social support that obtained by mothers were; neighbors (10%), extended family (8%), children (8%), husband (7%), parents (7%), and siblings (5%). Unfortunately, more mothers who admitted not getting any social support when having problems (55%). The form of social support that given to mother from poor household were: instrumental support (91%), emotional support (5%) and informational support (2%). Implications for further intervention also discussed in this study.

Keywords: household problems, social support, mothers, poor households

Procedia PDF Downloads 365
11699 Dialogic Approaches to Writing Pedagogy

Authors: Yael Leibovitch

Abstract:

Teaching academic writing is a source of concern for secondary schools. Many students struggle to meet the basic standards of literacy while teacher confidence in this arena remains low. These issues are compounded by the conventionally prescriptive character of writing instruction, which fails to engage student writers. At the same time, a growing body of research on dialogic teaching has highlighted the powerful role of talk in student learning. With the intent of enhancing pedagogical capability, this paper shares finding from a co-inquiry case study that investigated how teachers think about and negotiate classroom discourse to position students as effective academic writers and thinkers. Using a range of qualitative methods, this project closely documents the iterative collaboration of educators as they sought to create more opportunities for dialogic engagement. More specifically, it triangulates both teacher and student data regarding the efficacy of interdependent thinking and collaborative reasoning as organizing principals for literacy learning. Findings indicate that a dialogic teaching repertoire helps to develop the cognitive and metacognitive skills of adolescent writers. In addition, they underscore the importance of sustained professional collaboration to the uptake of new writing pedagogies.

Keywords: dialogic teaching, writing, teacher professional development, student literacy

Procedia PDF Downloads 213
11698 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning

Procedia PDF Downloads 147
11697 The Effect of Ethnomathematics on School Mathematics in Kano State Junior Secondary Schools

Authors: Surajo Isa

Abstract:

In as much as mathematics is important to national development, it is regrettable to note that in Nigeria Students academic achievement especially in public examinations remains poor. Among the several factors responsible for such a poor performance is the lack of bringing cultural elements into the conventional school mathematics. The design for this study is triangulation in nature which is set to examined 800 students From 20 School (40 each from male and female schools). Ten (10) male and ten (10) female schools consisting of 400 male and 400 female students to formed the experiment and control groups with a further sub-groping of samples to represent urban and rural settings for both male and female groups. While the experimental groups were taught using ethnomathematics techniques, the control groups were taught using conventional techniques, the results of a t-test for independent samples at p =0.05 level of significance with tcritical = 1.968 showed that (a) boys performed significantly better than girls (b) there is no significantly difference in performance between urban and rural girls (c) significant difference in academic performance was obtained between urban and rural boys. Generally, it was observed that teaching mathematics with ethnomathematics technique would help in great achievement in mathematics.

Keywords: ethnomathematics, achievement, gender, settlement

Procedia PDF Downloads 222
11696 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 599
11695 Investigation of Various Variabilities of Social Anxiety Levels of Physical Education and Sports School Students

Authors: Turan Cetinkaya

Abstract:

The aim of this study is to determine the relation of the level of social anxiety to various variables of the students in physical education and sports departments. 229 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participate in the research. Personal information tool and social anxiety scale consisting 30 items were used as data collection tool in the research. Distribution, frequency, t-test and ANOVA test were used in the comparison of the related data. As a result of statistical analysis, social anxiety levels do not differ according to gender, income level, sports type and national player status.

Keywords: social anxiety, undergraduates, sport, unıversty

Procedia PDF Downloads 429
11694 An Acerbate Psychotics Symptoms, Social Support, Stressful Life Events, Medication Use Self-Efficacy Impact on Social Dysfunction: A Cross Sectional Self-Rated Study of Persons with Schizophrenia Patient and Misusing Methamphetamines

Authors: Ek-Uma Imkome, Jintana Yunibhand, Waraporn Chaiyawat

Abstract:

Background: Persons with schizophrenia patient and misusing methamphetamines suffering from social dysfunction that impact on their quality of life. Knowledge of factors related to social dysfunction will guide the effective intervention. Objectives: To determine the direct effect, indirect effect and total effect of an acerbate Psychotics’ Symptoms, Social Support, Stressful life events, Medication use self-efficacy impact on social dysfunction in Thai schizophrenic patient and methamphetamine misuse. Methods: Data were collected from schizophrenic and methamphetamine misuse patient by self report. A linear structural relationship was used to test the hypothesized path model. Results: The hypothesized model was found to fit the empirical data and explained 54% of the variance of the psychotic symptoms (X2 = 114.35, df = 92, p-value = 0.05, X2 /df = 1.24, GFI = 0.96, AGFI = 0.92, CFI = 1.00, NFI = 0.99, NNFI = 0.99, RMSEA = 0.02). The highest total effect on social dysfunction was psychotic symptoms (0.67, p<0.05). Medication use self-efficacy had a direct effect on psychotic symptoms (-0.25, p<0.01), and social support had direct effect on medication use self efficacy (0.36, p <0.01). Conclusions: Psychotic symptoms and stressful life events were the significance factors that influenced direct on social dysfunctioning. Therefore, interventions that are designed to manage these factors are crucial in order to enhance social functioning in this population.

Keywords: psychotic symptoms, methamphetamine, schizophrenia, stressful life events, social dysfunction, social support, medication use self efficacy

Procedia PDF Downloads 208
11693 Storytelling as a Pedagogical Tool to Learn English Language in Higher Education: Using Reflection and Experience to Improve Learning

Authors: Barzan Hadi Hama Karim

Abstract:

The purpose of this research study is to determine how educators, students at the university level are using storytelling to support the educational process. This study provides a general framework about educational uses of storytelling as a pedagogical too to learn English language in the higher education and describes the different perceptions of people (teachers and students) at different levels. A survey is used to collect responses from a group of educators and students in educational settings to determine how they are using storytelling for educational purposes. The results show the current situation of educational uses of storytelling and explore some of the benefits and challenges educators face in implementing storytelling in their institutions. The purpose of our research is to investigate the impact of storytelling as a pedagogical tool to learn English language in higher education and its academic achievements on ESL students. It highlights findings that address the following questions: (1) How has storytelling been approached historically? (2) Is storytelling beneficial for students in early grades at university? (3) To what extent do teacher and student prefer storytelling as a pedagogical tool to teach and learn English language in higher education?

Keywords: storytelling, teacher's beliefs, student’s beliefs, student’s academic achievement, narrative, pedagogy, ESL

Procedia PDF Downloads 395
11692 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 529
11691 Relationship between Codependency, Perceived Social Support, and Depression in Mothers of Children with Intellectual Disability

Authors: Sajed Yaghoubnezhad, Mina Karimi, Seyede Marjan Modirkhazeni

Abstract:

The goal of this research was to study the relationship between codependency, perceived social support and depression in mothers of children with intellectual disability (ID). The correlational method was used in this study. The research population is comprised of mothers of educable children with ID in the age range of 25 to 61 years. From among this, a sample of 251 individuals, in the multistage cluster sampling method, was selected from educational districts in Tehran, who responded to the Spann-Fischer Codependency Scale (SFCDS), the Social Support Questionnaire and the Beck Depression Inventory (BDI). The findings of this study indicate that among mothers of children with ID depression has a positive and significant correlation with codependency (P<0.01, r=0.4) and a negative and significant correlation with the total score of social support (P<0.01, r=-0.34). Moreover, the results of stepwise multiple regression analysis showed that codependency is allocated a higher variance than social support in explaining depression (R2=0.023).

Keywords: codependency, social support, depression, mothers of children with ID

Procedia PDF Downloads 368
11690 Effects of Artificial Intelligence and Machine Learning on Social Media for Health Organizations

Authors: Ricky Leung

Abstract:

Artificial intelligence (AI) and machine learning (ML) have revolutionized the way health organizations approach social media. The sheer volume of data generated through social media can be overwhelming, but AI and ML can help organizations effectively manage this information to improve the health and well-being of individuals and communities. One way AI can be used to enhance social media in health organizations is through sentiment analysis. This involves analyzing the emotions expressed in social media posts to better understand public opinion and respond accordingly. This can help organizations gauge the impact of their campaigns, track the spread of misinformation, and improve communication with the public. While social media is a useful tool, researchers and practitioners have expressed fear that it will be used for the spread of misinformation, which can have serious consequences for public health. Health organizations must work to ensure that AI systems are transparent, trustworthy, and unbiased so they can help minimize the spread of misinformation. In conclusion, AI and ML have the potential to greatly enhance the use of social media in health organizations. These technologies can help organizations effectively manage large amounts of data and understand stakeholders' sentiments. However, it is important to carefully consider the potential consequences and ensure that these systems are carefully designed to minimize the spread of misinformation.

Keywords: AI, ML, social media, health organizations

Procedia PDF Downloads 89
11689 Family Homicide: A Comparison of Rural and Urban Communities in California

Authors: Bohsiu Wu

Abstract:

This study compares the differences in social dynamics between rural and urban areas in California to explain homicides involving family members. It is hypothesized that rural homicides are better explained by social isolation and lack of intervention resources, whereas urban homicides are attributed to social disadvantage factors. Several critical social dynamics including social isolation, social disadvantages, acculturation, and intervention resources were entered in a hierarchical linear model (HLM) to examine whether county-level factors affect how each specific dynamic performs at the ZIP code level, a proxy measure for communities. Homicide data are from the Supplementary Homicide Report for all 58 counties in California from 1997 to 1999. Predictors at both the county and ZIP code levels are derived from the 2000 US census. Preliminary results from a HLM analysis show that social isolation is a significant but moderate predictor to explain rural family homicide and various social disadvantage factors are significant factors accounting for urban family homicide. Acculturation has little impact. Rurality and urbanity appear to interact with various social dynamics in explaining family homicide. The implications for prevention at both the county and community level as well as directions for future study on the differences between rural and urban locales are explored in the paper.

Keywords: communities, family, HLM, homicide, rural, urban

Procedia PDF Downloads 326
11688 Secure Transmission Scheme in Device-to-Device Multicast Communications

Authors: Bangwon Seo

Abstract:

In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.

Keywords: device-to-device communications, wiretap channel, secure transmission, precoding

Procedia PDF Downloads 291
11687 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 73
11686 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 169