Search results for: Fisher Scoring Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3967

Search results for: Fisher Scoring Algorithm

2107 Acrylamide-Induced Thoracic Spinal Cord Axonopathy

Authors: Afshin Zahedi, Keivan Jamshidi

Abstract:

This study was conducted to determine the neurotoxic effects of different doses of ACR on the thoracic axons of the spinal cord of rat. To evaluate this hypothesis in the thoracic axons, amino-cupric silver staining technique of the de Olmos was conducted to define the histopathologic characteristic (argyrophilia) of axonal damage following ACR exposure. For this purpose 60 adult male rats (Wistar, approximately 250 g) were selected. Rats were hosed in polycarbonate boxes as two per each. Randomly assigned groups of rats (10 rats per exposure group, total 5 exposure groups as A, B, C, D and E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days intraperitoneal injection (IP injection) respectively. The remaining 10 rats were housed in group (F) as control group. Control rats received daily injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. Weight gains were measured daily prior to injection. Gait scoring involved observation of spontaneous open field locomotion, included evaluations of ataxia, hopping, rearing and hind foot placement, and hindlimb foot splay were determined 3-4 times per week. Gait score was assigned from 1-4. After 11 days, two rats for silver stain, were randomly selected, dissected and proper samples were collected from thoracic portion of the spinal cord of rat. Results did show no neurological behavior in groups A, B and F, whereas severe neurotoxicity was observed in groups C and D. Rats in groups E died within 1-2 hours due to severe toxemia. In histopathological studies based on the de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups C and D.

Keywords: acrylamide, rat, axonopathy, argyrophily, de Olmos

Procedia PDF Downloads 344
2106 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 79
2105 NMR-Based Metabolomic Study of Antimalarial Plant Species Used Traditionally by Vha-Venda People in Limpopo Province, South Africa

Authors: Johanna Bapela, Heino Heyman, Marion Meyer

Abstract:

Regardless of the significant advances accomplished in reducing the burden of malaria and other tropical diseases in recent years, malaria remains a major cause of mortality in endemic countries. This is especially the case in sub-Saharan Africa where 99% of the estimated global malaria deaths occurs on an annual basis. The emergence of resistant Plasmodium species and the lack of diversified chemotherapeutic agents provide the rationale for bioprospecting for antiplasmodial scaffolds. Crude extracts from twenty indigenous antimalarial plant species were screened for antimalarial activity and then subjected to 1H NMR-based metabolomic analysis. Ten plant extracts exhibited significant in vitro antiplasmodial activity (IC50 ≤ 5 µg/ml). The Principal Component Analysis (PCA) of the acquired 1H NMR spectra could not separate the analyzed plant extracts according to the detected antiplasmodial bioactivity. Application of supervised Orthogonal Projections to Latent Structures–Discriminant Analysis (OPLS-DA) to the 1H NMR profiles resulted in a discrimination pattern that could be correlated to bioactivity. A contribution plot generated from the OPLS-DA scoring plot illustrated the classes of compounds responsible for the observed grouping. Given the preliminary in vitro results, Tabernaemontana elegans Stapf. (Apocynaceae) and Vangueria infausta Burch. subsp. infausta (Rubiaceae) were subjected to further phytochemical investigations. Two indole alkaloids, dregamine and tabernaemontanine possessing antiplasmodial activity were isolated from T. elegans. Two compounds were isolated from V. infausta subsp. infausta and identified as friedelin (IC50 = 3.01 µg/ml) and morindolide (IC50 = 18.5 µg/ml). While these compounds have been previously identified, this is the first account of their occurrence in the genus Vangueria and their antiplasmodial activity. Based on the results of the study, metabolomics can be used to globally identify classes of plant secondary metabolites that are responsible for antiplasmodial activity.

Keywords: ethnopharmacology, Malaria, medicinal plants, metabolomics

Procedia PDF Downloads 343
2104 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 547
2103 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks

Authors: Alaa Allakany, Koji Okamura

Abstract:

Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).

Keywords: multicast tree, software define networks, tabu search, OpenFlow

Procedia PDF Downloads 265
2102 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe

Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran

Abstract:

The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.

Keywords: access control, multimodal biometrics, pattern recognition, security safe

Procedia PDF Downloads 338
2101 User Authentication Using Graphical Password with Sound Signature

Authors: Devi Srinivas, K. Sindhuja

Abstract:

This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile.

Keywords: security, graphical password, persuasive cued click points

Procedia PDF Downloads 539
2100 The Impact of Introspective Models on Software Engineering

Authors: Rajneekant Bachan, Dhanush Vijay

Abstract:

The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.

Keywords: software engineering, architectures, introspective models, operating systems

Procedia PDF Downloads 540
2099 Automated Parking System

Authors: N. Arunraj, C. P. V. Paul, D. M. D. Jayawardena, W. N. D. Fernando

Abstract:

Traffic congestion with increased numbers of vehicles is already a serious issue for many countries. The absence of sufficient parking spaces adds to the issue. Motorists are forced to wait in long queues to park their vehicles. This adds to the inconvenience faced by a motorist, kept waiting for a slot allocation, manually done along with the parking payment calculation. In Sri Lanka, nowadays, parking systems use barcode technology to identify the vehicles at both the entrance and the exit points. Customer management is handled by the use of man power. A parking space is, generally permanently sub divided according to the vehicle type. Here, again, is an issue. Parking spaces are not utilized to the maximum. The current arrangement leaves room for unutilized parking spaces. Accordingly, there is a need to manage the parking space dynamically. As a vehicle enters the parking area, available space has to be assigned for the vehicle according to the vehicle type. The system, Automated Parking System (APS), provides an automated solution using RFID Technology to identify the vehicles. Simultaneously, an algorithm manages the space allocation dynamically. With this system, there is no permanent parking slot allocation for a vehicle type. A desktop application manages the customer. A Web application is used to manage the external users with their reservations. The system also has an android application to view the nearest parking area from the current location. APS is built using java and php. It uses LED panels to guide the user inside the parking area to find the allocated parking slot accurately. The system ensures efficient performance, saving precious time for a customer. Compared with the current parking systems, APS interacts with users and increases customer satisfaction as well.

Keywords: RFID, android, web based system, barcode, algorithm, LED panels

Procedia PDF Downloads 600
2098 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 110
2097 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan

Authors: Usman Ahmed Khan

Abstract:

Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.

Keywords: LST, LULC, isodata, urbanization

Procedia PDF Downloads 101
2096 Tardiness and Self-Regulation: Degree and Reason for Tardiness in Undergraduate Students in Japan

Authors: Keiko Sakai

Abstract:

In Japan, all stages of public education aim to foster a zest for life. ‘Zest’ implies solving problems by oneself, using acquired knowledge and skills. It is related to the self-regulation of metacognition. To enhance this, establishing good learning habits is important. Tardiness in undergraduate students should be examined based on self-regulation. Accordingly, we focussed on self-monitoring and self-planning strategies among self-regulated learning factors to examine the causes of tardiness. This study examines the impact of self-monitoring and self-planning learning skills on the degree and reason for tardiness in undergraduate students. A questionnaire survey was conducted, targeted to undergraduate students in University X in the autumn semester of 2018. Participants were 247 (average age 19.7, SD 1.9; 144 males, 101 females, 2 no answers). The survey contained the following items and measures: school year, the number of classes in the semester, degree of tardiness in the semester (subjective degree and objective times), active participation in and action toward schoolwork, self-planning and self-monitoring learning skills, and reason for tardiness (open-ended question). First, the relation between strategies and tardiness was examined by multiple regressions. A statistically significant relationship between a self-monitoring learning strategy and the degree of subjective and objective tardiness was revealed, after statistically controlling the school year and the number of classes. There was no significant relationship between a self-planning learning strategy and the degree of tardiness. These results suggest that self-monitoring skills reduce tardiness. Secondly, the relation between a self-monitoring learning strategy and the reason of tardiness was analysed, after classifying the reason for tardiness into one of seven categories: ‘overslept’, ‘illness’, ‘poor time management’, ‘traffic delays’, ‘carelessness’, ‘low motivation’, and ‘stuff to do’. Chi-square tests and Fisher’s exact tests showed a statistically significant relationship between a self-monitoring learning strategy and the frequency of ‘traffic delays’. This result implies that self-monitoring skills prevent tardiness because of traffic delays. Furthermore, there was a weak relationship between a self-monitoring learning strategy score and the reason-for-tardiness categories. When self-monitoring skill is higher, a decrease in ‘overslept’ and ‘illness’, and an increase in ‘poor time management’, ‘carelessness’, and ‘low motivation’ are indicated. It is suggested that a self-monitoring learning strategy is related to an internal causal attribution of failure and self-management for how to prevent tardiness. From these findings, the effectiveness of a self-monitoring learning skill strategy for reducing tardiness in undergraduate students is indicated.

Keywords: higher-education, self-monitoring, self-regulation, tardiness

Procedia PDF Downloads 137
2095 Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level 1 Trauma Centre

Authors: Franklin Chu Buh, Irene Ule Ngole Sumbele, Andrew I. R. Maas, Mathieu Motah, Jogi V. Pattisapu, Eric Youm, Basil Kum Meh, Firas H. Kobeissy, Kevin W. Wang, Peter J. A. Hutchinson, Germain Sotoing Taiwe

Abstract:

Introduction: Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma center in Cameroon. Methods: Data on demographics, causes, injury mechanisms, clinical aspects, and discharge status were prospectively collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes 6-months after TBI. Categorical variables were described as frequencies and percentages. Comparisons between 2 categorical variables were done using Pearson's Chi-square test or Fisher's exact test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years (78%; 125) was most represented. Males were more affected (90%; 144). Low educational level was recorded in 122 (76%) cases. Road traffic incidents (RTI) were the main cause of TBI (85%), with professional bike riders being frequently involved (27%, 43/160). Assaults (7.5%) and falls (2.5%) represent the second and third most common causes of TBI in Cameroon, respectively. Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% (125/160) of cases intracranial traumatic abnormality was identified in 77/125 (64%) cases. Financial constraints were the main reason for not performing a CT scan on 35 patients. A total of 46 (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) but disproportionately high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only 4 patients received post-injury physiotherapy services. Conclusion: TBI in Cameroon mainly results from RTIs and commonly affects young adult males, and low educational or socioeconomic status and commercial bike riding appear to be predisposing factors. Lack of pre-hospital care, financial constraints limiting both CT-scanning and medical care, and lack of acute physiotherapy services likely influenced care and outcomes adversely.

Keywords: characteristics, traumatic brain injury, outcome, disparities in care, prospective study

Procedia PDF Downloads 125
2094 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan

Abstract:

Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.

Keywords: environment, Landsat 8, SW Algorithm, TIR

Procedia PDF Downloads 356
2093 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: cluster analysis, construction management, earned value, schedule

Procedia PDF Downloads 267
2092 Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital

Authors: Pranee Suecharoen, Jaturat Kanpittaya

Abstract:

Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential.

Keywords: adverse reactions, contrast media, computed tomography, iodinated contrast agents

Procedia PDF Downloads 363
2091 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 24
2090 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video

Authors: Nidhal Azawi

Abstract:

Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.

Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter

Procedia PDF Downloads 116
2089 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 120
2088 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 364
2087 Refining Scheme Using Amphibious Epistemologies

Authors: David Blaine, George Raschbaum

Abstract:

The evaluation of DHCP has synthesized SCSI disks, and current trends suggest that the exploration of e-business that would allow for further study into robots will soon emerge. Given the current status of embedded algorithms, hackers worldwide obviously desire the exploration of replication, which embodies the confusing principles of programming languages. In our research we concentrate our efforts on arguing that erasure coding can be made "fuzzy", encrypted, and game-theoretic.

Keywords: SCHI disks, robot, algorithm, hacking, programming language

Procedia PDF Downloads 431
2086 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation

Authors: Harini Chakkera

Abstract:

Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.

Keywords: kidney, transplant, diabetes, insulin

Procedia PDF Downloads 94
2085 Pattern of External Injuries Sustained during Bomb Blast Attacks in Karachi, Pakistan from 2000 to 2007

Authors: Arif Anwar Surani, Salman Ali, Asif Surani, Sohaib Zahid, Akbar Shoukat Ali, Zeeshan-Ul-Hassan Usmani, Joseph Varon, Salim Surani

Abstract:

Objective: Terrorism and suicidal bomb blast attacks are commonplace in Karachi, Pakistan. During the years 2000 to 2007, there were over 60 bomb explosions resulting in more than 1500 casualties. These explosions produce a wide variety of external injuries. We undertook this study to evaluate pattern of external injury produced after bomb blast attacks and to compare injury profile resulting from explosions in open versus semi-confined blast environments. Method: A retrospective, cross-sectional, study was conducted to review injuries sustained after bomb blast attacks in Karachi, Pakistan, from January 2000 to October 2007. Emergency medical records and medico legal certificates of patients presented to three major public sector hospitals of Karachi were evaluated using self-design proforma. Results: Data of 481 victims meet inclusion criteria and were incorporated for final analysis. Of these, 63.6% were injured in open spaces and 36.4% were injured in semi-confined blast environments. Lacerations were commonly encountered as external injury (47.7%) followed by penetrating wounds (15.3%). Lower and upper extremities were most commonly affected (38.6% and 19% respectively). Open and semi-confined blast environments produced a specific injury pattern and profile (p=<0.001). Conclusions: Bomb blast attacks in Karachi produce an external injury pattern consistent with other studies, with exception of an increased frequency in penetrating wounds. Semi-confined blast environments were associated with severe injuries. Further studies are required to better classify injuries and their severity based on standardized scoring systems. Effective emergency response systems must be designed to cope with mass causalities following bomb explosions.

Keywords: bomb blast attacks, injury pattern, external injury, open space, semi-confined space, blast environment

Procedia PDF Downloads 399
2084 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 151
2083 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 121
2082 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 88
2081 Impact of Preksha Meditation on Academic Anxiety of Female Teenagers

Authors: Neelam Vats, Madhvi Pathak Pillai, Rajender Lal, Indu Dabas

Abstract:

The pressure of scoring higher marks to be able to get admission in a higher ranked institution has become a social stigma for school students. It leads to various social and academic pressures on them, causing psychological anxiety. This undue stress on students sometimes may even steer to aggressive behavior or suicidal tendencies. Human mind is always surrounded by the some desires, emotions and passions, which usually disturbs our mental peace. In such a scenario, we look for a solution that helps in removing all the obstacles of mind and make us mentally peaceful and strong enough to be able to deal with all kind of pressure. Preksha meditation is one such technique which aims at bringing the positive changes for overall transformation of personality. Hence, the present study was undertaken to assess the impact of Preksha Meditation on the academic anxiety on female teenagers. The study was conducted on 120 high school students from the capital city of India. All students were in the age group of 13-15 years. They also belonged to similar social as well as economic status. The sample was equally divided into two groups i.e. experimental group (N = 60) and control group (N = 60). Subjects of the experimental group were given the intervention of Preksha Meditation practice by the trained instructor for one hour per day, six days a week, for three months for the first experimental stage and another three months for the second experimental stage. The subjects of the control group were not assigned any specific type of activity rather they continued doing their normal official activities as usual. The Academic Anxiety Scale was used to collect data during multi-level stages i.e. pre-experimental stage, post-experimental stage phase-I, and post-experimental stage phase-II. The data were statistically analyzed by computing the two-tailed-‘t’ test for inter group comparison and Sandler’s ‘A’ test with alpha = or p < 0.05 for intra-group comparisons. The study concluded that the practice for longer duration of Preksha Meditation practice brings about very significant and beneficial changes in the pattern of academic anxiety.

Keywords: academic anxiety, academic pressure, Preksha, meditation

Procedia PDF Downloads 133
2080 Endotracheal Intubation Self-Confidence: Report of a Realistic Simulation Training

Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Doris F. Rabelo

Abstract:

Introduction: Endotracheal Intubation (ETI) is a procedure for clinical management of patients with severe clinical presentation of COVID-19 disease. Realistic simulation (RS) is an active learning methodology utilized for clinical skill's improvement. To improve ETI skills of public health network's physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was planned and carried out. Training scenario included the Nasco Lifeform realistic simulator, and three actions were simulated: ETI procedure, sedative drugs management, and bougie guide utilization. Training intervention occurred between May and June 2020, as an interinstitutional cooperation between the Health's Department of Bahia State and the Federal University from Recôncavo da Bahia. Objective: The main objective is to report the effects on participants' self-confidence perception for ETI procedure after RS based training. Methods: This is a descriptive study, with secondary data extracted from questionnaires applied throughout RS training. Priority workplace, time from last intubation, and knowledge about bougie were reported on a preparticipation questionnaire. Additionally, participants completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding self-confidence perception in performing each of simulated actions. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's Exact Test. Results: 36 physicians participated of training, 25 (69%) from primary care setting, 25 (69%) performed ETI over a year ago, and only 4 (11%) had previous knowledge about the bougie guide utilization. There was an increase in self-confidence medians for all three simulated actions. Medians (variation) for self-confidence before and after training, for each simulated action were as follows: ETI [5 (1-9) vs. 8 (6-10) (p < 0.0001)]; Sedative drug management [5 (1-9) vs. 8 (4-10) (p < 0.0001)]; Bougie guide utilization [2.5 (1-7) vs. 8 (4-10) (p < 0.0001)]. Among those who performed ETI over a year ago (n = 25), an increase in self-confidence greater than 3 points for ETI was reported by 23 vs. 2 physicians (p = 0.0002), and by 21 vs. 4 (p = 0.03) for sedative drugs management. Conclusions: RS training contributed to self-confidence increase in performing ETI. Among participants who performed ETI over a year, there was a significant association between RS training and increase of more than 3 points in self-confidence, both for ETI and sedative drug management. Training with RS methodology is suitable for ETI confidence enhancement during COVID-19 outbreak.

Keywords: confidence, COVID-19, endotracheal intubation, realistic simulation

Procedia PDF Downloads 142
2079 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 305
2078 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 165