Search results for: modified physical quantity method
7273 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen
Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine
Abstract:
Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy
Procedia PDF Downloads 317272 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 2907271 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis
Authors: Qamar Iqbal
Abstract:
Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment
Procedia PDF Downloads 5977270 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 227269 Counteracting Disruptions during the COVID-19 Pandemic in the Supply Chains of the Automotive Industry: The Example of Polish Enterprises
Authors: Tomasz Rokicki, Piotr Bórawski, Aneta Bełdycka-Bórawska, András Szeberényi
Abstract:
The aim of the article was to present ways to counteract disruptions during the COVID-19 pandemic occurring in the supply chain of enterprises from the automotive industry. The specific objectives are to determine changes in the automotive industry during the pandemic, to show the types of disruptions in supply chains, and how to counteract these unfavorable situations. Enterprises from the automotive industry operating in Poland were deliberately selected for research. Using the purposive sampling method, ten companies from the automotive industry were selected for qualitative research. In-depth research was carried out in selected enterprises using a personal interview. At the beginning of the pandemic, lockdowns and unpredictability were a problem. The key was to protect employees and introduce appropriate procedures. In the later stages of the pandemic, there were restrictions on the timeliness of deliveries and extension of delivery times. There were problems with the shortage of materials, and the costs of products and transport increased. In automotive companies, counteracting the effects of the pandemic consisted of ensuring the safety of employees, maintaining constant contact and communication with branches and headquarters, as well as with suppliers and contractors. Therefore, appropriate communication, cooperation, and flexibility were important.Keywords: disruptions, automotive industry, supply chain disruption, cooperation in supply chain
Procedia PDF Downloads 737268 Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications
Authors: Alpha Matthew
Abstract:
The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance.Keywords: coconut carbon husk, power density, energy density, battery, anode electrode
Procedia PDF Downloads 347267 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 337266 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining
Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva
Abstract:
Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining
Procedia PDF Downloads 1707265 The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock
Authors: A. Kavandi, K. Goshtasbi, M. R. Hadei, H. Nejati
Abstract:
In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip.Keywords: heating-cooling, anisotropic rock, fracture toughness, liquid nitrogen
Procedia PDF Downloads 627264 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications
Authors: Stephen Akong Takim
Abstract:
This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application
Procedia PDF Downloads 807263 Frequency of Hepatitis C Virus in Diagnosed Tuberculosis Cases
Authors: Muhammad Farooq Baig, Saleem Qadeer
Abstract:
Background: The frequency of hepatitis C virus infection along with tuberculosis has not been widely investigated and very low statistics on rates of hepatitis C virus co-infection in tuberculosis patients. Hepatotoxicity is the major side effect of anti-tuberculosis therapy hepatitis HCVliver disease elevates the chances of hepatotoxicity up-to five folds. Objectives & Aim: To see the frequency of Hepatitis Cvirus infection amongst people with diagnosed Tuberculosis using gene X-pert technique. To evaluate the factors associated with HCVinfection in patients with MTBtuberculosis and to determine sensitivity and specificity of the tests. Study design: Comparative analytical study. Methodology: Three hundred and thirteen patients of tuberculosis diagnosed by Genexpert included while testing hepatitis C virus using immunochromotography rapid test technique, enzyme linked immunosorbent assay method and polymerase chain reaction test for confirmation. Results:Higher frequency of tuberculosis infection in males 57.8%, 42.5% between 20-39 years and 22% of hepatitis C virus infection in tuberculosis patients.The sensitivity of rapid test and enzyme-linked immunosorbent assay was 79% and 96% respectively while the specificity of rapid test and enzyme-linked immunosorbent assay was 91% and 99% respectively.Keywords: Mycobactrium Tuberculosis, PC'R, Gene x pert, Hepatitis C virus
Procedia PDF Downloads 827262 Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel
Authors: J. Ptačinová, J. Ďurica, P. Jurči, M Kusý
Abstract:
Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak.Keywords: microstructure, Vanadis 6 tool steel, sub-zero treatment, carbides
Procedia PDF Downloads 1657261 Design and Implementation of Image Super-Resolution for Myocardial Image
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction
Procedia PDF Downloads 3777260 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns
Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè
Abstract:
Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column
Procedia PDF Downloads 3567259 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory
Procedia PDF Downloads 4647258 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor
Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly
Abstract:
In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.Keywords: nano iron, core-shell, reduction reaction, K-M reactor
Procedia PDF Downloads 3147257 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer
Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang
Abstract:
The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer
Procedia PDF Downloads 1177256 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste
Authors: Julieta Daniela Chelaru, Maria Gorea
Abstract:
The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials
Procedia PDF Downloads 3487255 Employing a Knime-based and Open-source Tools to Identify AMI and VER Metabolites from UPLC-MS Data
Authors: Nouf Alourfi
Abstract:
This study examines the metabolism of amitriptyline (AMI) and verapamil (VER) using a KNIME-based method. KNIME improved workflow is an open-source data-analytics platform that integrates a number of open-source metabolomics tools such as CFMID and MetFrag to provide standard data visualisations, predict candidate metabolites, assess them against experimental data, and produce reports on identified metabolites. The use of this workflow is demonstrated by employing three types of liver microsomes (human, rat, and Guinea pig) to study the in vitro metabolism of the two drugs (AMI and VER). This workflow is used to create and treat UPLC-MS (Orbitrap) data. The formulas and structures of these drugs' metabolites can be assigned automatically. The key metabolic routes for amitriptyline are hydroxylation, N-dealkylation, N-oxidation, and conjugation, while N-demethylation, O-demethylation and N-dealkylation, and conjugation are the primary metabolic routes for verapamil. The identified metabolites are compatible to the published, clarifying the solidity of the workflow technique and the usage of computational tools like KNIME in supporting the integration and interoperability of emerging novel software packages in the metabolomics area.Keywords: KNIME, CFMID, MetFrag, Data Analysis, Metabolomics
Procedia PDF Downloads 1267254 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.Keywords: earthquake, Nepal, reconstruction, settlement, transformation
Procedia PDF Downloads 1217253 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture
Authors: E. Osorio Schmied
Abstract:
Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.Keywords: architecture, design statements, nature, perception
Procedia PDF Downloads 3467252 Factors Associated with Hand Functional Disability in People with Rheumatoid Arthritis: A Systematic Review and Best-Evidence Synthesis
Authors: Hisham Arab Alkabeya, A. M. Hughes, J. Adams
Abstract:
Background: People with Rheumatoid Arthritis (RA) continue to experience problems with hand function despite new drug advances and targeted medical treatment. Consequently, it is important to identify the factors that influence the impact of RA disease on hand function. This systematic review identified observational studies that reported factors that influenced the impact of RA on hand function. Methods: MEDLINE, EMBASE, CINAL, AMED, PsychINFO, and Web of Science database were searched from January 1990 up to March 2017. Full-text articles published in English that described factors related to hand functional disability in people with RA were selected following predetermined inclusion and exclusion criteria. Pertinent data were thoroughly extracted and documented using a pre-designed data extraction form by the lead author, and cross-checked by the review team for completion and accuracy. Factors related to hand function were classified under the domains of the International Classification of Functioning, Disability, and Health (ICF) framework and health-related factors. Three reviewers independently assessed the methodological quality of the included articles using the quality of cross-sectional studies (AXIS) tool. Factors related to hand function that was investigated in two or more studies were explored using a best-evidence synthesis. Results: Twenty articles form 19 studies met the inclusion criteria from 1,271 citations; all presented cross-sectional data (five high quality and 15 low quality studies), resulting in at best limited evidence in the best-evidence synthesis. For the factors classified under the ICF domains, the best-evidence synthesis indicates that there was a range of body structure and function factors that were related with hand functional disability. However, key factors were hand strength, disease activity, and pain intensity. Low functional status (physical, emotional and social) level was found to be related with limited hand function. For personal factors, there is limited evidence that gender is not related with hand function; whereas, conflicting evidence was found regarding the relationship between age and hand function. In the domain of environmental factors, there was limited evidence that work activity was not related with hand function. Regarding health-related factors, there was limited evidence that the level of the rheumatoid factor (RF) was not related to hand function. Finally, conflicting evidence was found regarding the relationship between hand function and disease duration and general health status. Conclusion: Studies focused on body structure and function factors, highlighting a lack of investigation into personal and environmental factors when considering the impact of RA on hand function. The level of evidence which exists was limited, but identified that modifiable factors such as grip or pinch strength, disease activity and pain are the most influential factors on hand function in people with RA. The review findings suggest that important personal and environmental factors that impact on hand function in people with RA are not yet considered or reported in clinical research. Well-designed longitudinal, preferably cohort, studies are now needed to better understand the causality between personal and environmental factors and hand functional disability in people with RA.Keywords: factors, hand function, rheumatoid arthritis, systematic review
Procedia PDF Downloads 1517251 The Role of KontraS as Track-6 on Multi Track Diplomacy for Conflict Resolution: Case Study Human Rights Crisis in Myanmar in 2015
Authors: Hardi Alunaza, Mauidhotu Rofiq
Abstract:
This research is attempted to describe the role of KontraS as track-6 on multi track diplomacy for conflict resolution in Myanmar in 2015. The researcher took the specific interest on multi track diplomacy and transnational advocacy concepts to analyze the phenomena. Furthermore, this essay is using the descriptive method with a qualitative approach. The data collection technique is literature study consisting of books, journals, and including data from the reliable website in supporting the explanation of this research. The result of this research is divided into two important points in explaining the role of KontraS in cases of human rights crisis in Myanmar. First, KontraS as human rights NGO in Indonesia was able to advocate against human rights violence that occurred in other countries by encouraging Indonesian Government to take part in the resolution of human rights issues affecting the Rohingya people in Burma. Also, KontraS take advantages of transnational advocacy networks as a form of politics and accountabilities responsibility of Non-Governmental Organization against human rights crisis in other countries.Keywords: conflict resolution, human rights crisis, multi track diplomacy, transnational advocacy
Procedia PDF Downloads 3317250 3D Human Body Reconstruction Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X
Procedia PDF Downloads 747249 Chemical Characterization and Antioxidant Capacity of Flour From Two Soya Bean Cultivars (Glycine Max)
Authors: Meziani Samira, Menadi Noreddine, Labga Lahouaria, Chenni Fatima Zohra, Toumi Asma
Abstract:
A comparative study between two varieties of soya beans was carried out in this work. The method consists of studying and proceeding to prepare a by-product (Flour) from two varieties of soybeans, a Chinese variety imported and marketed in Algeria. The chemical composition of ash, protein and fat was determined in this study. The minerals, namely potassium and sodium, were measured by flame spectrophotometer. In addition, the estimation of the polyphenol content and evaluation of the antioxidant activity Ferric Reducing Antioxidant Power assay (FRAP) f the methanol extracts of the flours were also carried out. The result revealed that soy flour from two cultivars, on average, contained 8% moisture, more than 50% protein, 1.58-1.87g fat, and 0.28-0.30g of ash. A slight difference was found for contents of 489 mg/ml of K + and 20 mg/ml of NA +. In addition, the phenolic content of the methanolic extracts gives a value of almost 37 mg EAG / g for both cultivars of soy flour. The estimated Reductive Antioxidant Iron (FRAP) potency of soy flour might be related to its polyphenol richness, which is similar to the variety of China. The flour Soya varieties tested contained a significant amount of protein and phenolic compounds with good antioxidant properties.Keywords: soye beans, soya flour, protein, total polyphenols
Procedia PDF Downloads 977248 Taxation, Evidential and Jurisdictional Issues in Electronic Commercial Transactions in Nigeria
Authors: Michael Sunday Afolayan
Abstract:
This research work examined the challenges bedevilling the development of legal framework for electronic commercial transactions (e-commerce) in Nigeria. Nigeria does not have a clear-cut legislation regulating electronic commerce in its jurisdiction despite the geometrical rate of growth and adoption of this method of trade. It specifically posed a great challenge looking at taxation, evidential and jurisdictional issues in e-commerce in Nigeria. The author in a broader research work which is abridged here, traced the origin and development of e-commerce and the attendant laws applicable in Nigeria, examining their sufficiency or otherwise. In carrying out the research work, doctrinal mode of legal research was adopted, examining both primary and secondary sources of legal research materials within their contextual meanings. It was found that the failure to enact a law which has direct regulatory bearing on e-commerce in Nigeria has led to adoption and application of circumstantial laws, rules and common law principles to tackle the problems arising out of electronic commercial transactions, especially in the areas of taxation, evidential and jurisdictional challenges. It was ultimately suggested that there is urgent need to sign into law, the Electronic Transaction Bill which had already been passed by the National Assembly since 2017.Keywords: e-commerce, legislation, taxation, evidential, jurisdiction
Procedia PDF Downloads 907247 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data
Procedia PDF Downloads 3397246 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4797245 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors
Authors: Mohammad Alenezi
Abstract:
Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.Keywords: metal oxide, nanostructure, hydrothermal, sensor
Procedia PDF Downloads 2747244 Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings
Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition.Keywords: sol–gel, silica thin films, antireflective coatings, optical properties, triton
Procedia PDF Downloads 422