Search results for: state of learning
12188 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria
Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje
Abstract:
This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.Keywords: academic libraries, computers in library, digital libraries, public computers
Procedia PDF Downloads 35612187 The Impact of the Virtual Learning Environment on Teacher's Pedagogy and Student's Learning in Primary School Setting
Authors: Noor Ashikin Omar
Abstract:
The rapid growth and advancement in information and communication technology (ICT) at a global scene has greatly influenced and revolutionised interaction amongst society. The use of ICT has become second nature in managing everyday lives, particularly in the education environment. Traditional learning methods of using blackboards and chalks have been largely improved by the use of ICT devices such as interactive whiteboards and computers in school. This paper aims to explore the impacts of virtual learning environments (VLE) on teacher’s pedagogy and student’s learning in primary school settings. The research was conducted in two phases. Phase one of this study comprised a short interview with the school’s senior assistants to examine issues and challenges faced during planning and implementation of FrogVLE in their respective schools. Phase two involved a survey of a number of questionnaires directed to three major stakeholders; the teachers, students and parents. The survey intended to explore teacher’s and student’s perspective and attitude towards the use of VLE as a teaching and learning medium and as a learning experience as a whole. In addition, the survey from parents provided insights on how they feel towards the use of VLE for their child’s learning. Collectively, the two phases enable improved understanding and provided observations on factors that had affected the implementation of the VLE into primary schools. This study offers the voices of the students which were frequently omitted when addressing innovations as well as teachers who may not always be heard. It is also significant in addressing the importance of teacher’s pedagogy on students’ learning and its effects to enable more effective ICT integration with a student-centred approach. Finally, parental perceptions in the implementation of VLE in supporting their children’s learning have been implicated as having a bearing on educational achievement. The results indicate that the all three stakeholders were positive and highly supportive towards the use of VLE in schools. They were able to understand the benefits of moving towards the modern method of teaching using ICT and accept the change in the education system. However, factors such as condition of ICT facilities at schools and homes as well as inadequate professional development for the teachers in both ICT skills and management skills hindered exploitation of the VLE system in order to fully utilise its benefits. Social influences within different communities and cultures and costs of using the technology also has a significant impact. The findings of this study are important to the Malaysian Ministry of Education because it informs policy makers on the impact of the Virtual Learning Environment (VLE) on teacher’s pedagogy and learning of Malaysian primary school children. The information provided to policy makers allows them to make a sound judgement and enables an informed decision making.Keywords: attitudes towards virtual learning environment (VLE), parental perception, student's learning, teacher's pedagogy
Procedia PDF Downloads 20812186 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 13712185 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training
Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu
Abstract:
Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.Keywords: exponential value, facilitate learning, gender difference, virtual reality
Procedia PDF Downloads 9712184 Tardiness and Self-Regulation: Degree and Reason for Tardiness in Undergraduate Students in Japan
Authors: Keiko Sakai
Abstract:
In Japan, all stages of public education aim to foster a zest for life. ‘Zest’ implies solving problems by oneself, using acquired knowledge and skills. It is related to the self-regulation of metacognition. To enhance this, establishing good learning habits is important. Tardiness in undergraduate students should be examined based on self-regulation. Accordingly, we focussed on self-monitoring and self-planning strategies among self-regulated learning factors to examine the causes of tardiness. This study examines the impact of self-monitoring and self-planning learning skills on the degree and reason for tardiness in undergraduate students. A questionnaire survey was conducted, targeted to undergraduate students in University X in the autumn semester of 2018. Participants were 247 (average age 19.7, SD 1.9; 144 males, 101 females, 2 no answers). The survey contained the following items and measures: school year, the number of classes in the semester, degree of tardiness in the semester (subjective degree and objective times), active participation in and action toward schoolwork, self-planning and self-monitoring learning skills, and reason for tardiness (open-ended question). First, the relation between strategies and tardiness was examined by multiple regressions. A statistically significant relationship between a self-monitoring learning strategy and the degree of subjective and objective tardiness was revealed, after statistically controlling the school year and the number of classes. There was no significant relationship between a self-planning learning strategy and the degree of tardiness. These results suggest that self-monitoring skills reduce tardiness. Secondly, the relation between a self-monitoring learning strategy and the reason of tardiness was analysed, after classifying the reason for tardiness into one of seven categories: ‘overslept’, ‘illness’, ‘poor time management’, ‘traffic delays’, ‘carelessness’, ‘low motivation’, and ‘stuff to do’. Chi-square tests and Fisher’s exact tests showed a statistically significant relationship between a self-monitoring learning strategy and the frequency of ‘traffic delays’. This result implies that self-monitoring skills prevent tardiness because of traffic delays. Furthermore, there was a weak relationship between a self-monitoring learning strategy score and the reason-for-tardiness categories. When self-monitoring skill is higher, a decrease in ‘overslept’ and ‘illness’, and an increase in ‘poor time management’, ‘carelessness’, and ‘low motivation’ are indicated. It is suggested that a self-monitoring learning strategy is related to an internal causal attribution of failure and self-management for how to prevent tardiness. From these findings, the effectiveness of a self-monitoring learning skill strategy for reducing tardiness in undergraduate students is indicated.Keywords: higher-education, self-monitoring, self-regulation, tardiness
Procedia PDF Downloads 14012183 Experiential Language Learning as a Tool for Effective Global Leadership
Authors: Christiane Dumont
Abstract:
This paper proposes to revisit foreign-language learning as a tool to increase motivation through advocacy and develop effective natural communication skills, which are critical leadership qualities. To this end, collaborative initiatives undertaken by advanced university students of French with local and international community partners will be reviewed. Close attention will be paid to the acquisition of intercultural skills, the reflective process, as well as the challenges and outcomes. Two international development projects conducted in Haiti will be highlighted, i.e., collaboration with a network of providers in the Haitian cultural heritage preservation and tourism sector (2014-15) and development of investigation and teacher training tools for a primary/secondary school in the Port-au-Prince area (current). The choice of community-service learning as a framework to teach French-as-a-second-language stemmed from the need to raise awareness against stereotypes and prejudice, which hinder the development of effective intercultural skills. This type of experiential education also proved very effective in identifying and preventing miscommunication caused by the lack of face-to-face interaction in our increasingly technology-mediated world. Learners experienced first-hand, the challenges and advantages of face-to-face communication, which, in turn, enhanced their motivation for developing effective intercultural skills. Vygotsky's and Kolb's theories, current research on service learning (Dwight, Eyler), action/project-based pedagogy (Beckett), and reflective learning (TSC Farrell), will provide useful background to analyze the benefits and challenges of community-service learning. The ultimate goal of this paper is to find out what makes experiential learning truly unique and transformative for both the learners and the community they wish to serve. It will demonstrate how enhanced motivation, community engagement, and clear, concise, and respectful communication impact and empower learners. The underlying hope is to help students in high-profile, and leading-edge industries become effective global leaders.Keywords: experiential learning, intercultural communication, reflective learning, effective leadership, learner motivation
Procedia PDF Downloads 11112182 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles
Authors: Merouane Salhi, Toufik Zebbiche
Abstract:
When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure
Procedia PDF Downloads 44812181 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning
Authors: Yinheng Li
Abstract:
The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.Keywords: in-context learning, prompt engineering, zero-shot learning, large language models
Procedia PDF Downloads 8812180 Outcome-Based Education as Mediator of the Effect of Blended Learning on the Student Performance in Statistics
Authors: Restituto I. Rodelas
Abstract:
The higher education has adopted the outcomes-based education from K-12. In this approach, the teacher uses any teaching and learning strategies that enable the students to achieve the learning outcomes. The students may be required to exert more effort and figure things out on their own. Hence, outcomes-based students are assumed to be more responsible and more capable of applying the knowledge learned. Another approach that the higher education in the Philippines is starting to adopt from other countries is blended learning. This combination of classroom and fully online instruction and learning is expected to be more effective. Participating in the online sessions, however, is entirely up to the students. Thus, the effect of blended learning on the performance of students in Statistics may be mediated by outcomes-based education. If there is a significant positive mediating effect, then blended learning can be optimized by integrating outcomes-based education. In this study, the sample will consist of four blended learning Statistics classes at Jose Rizal University in the second semester of AY 2015–2016. Two of these classes will be assigned randomly to the experimental group that will be handled using outcomes-based education. The two classes in the control group will be handled using the traditional lecture approach. Prior to the discussion of the first topic, a pre-test will be administered. The same test will be given as posttest after the last topic is covered. In order to establish equality of the groups’ initial knowledge, single factor ANOVA of the pretest scores will be performed. Single factor ANOVA of the posttest-pretest score differences will also be conducted to compare the performance of the experimental and control groups. When a significant difference is obtained in any of these ANOVAs, post hoc analysis will be done using Tukey's honestly significant difference test (HSD). Mediating effect will be evaluated using correlation and regression analyses. The groups’ initial knowledge are equal when the result of pretest scores ANOVA is not significant. If the result of score differences ANOVA is significant and the post hoc test indicates that the classes in the experimental group have significantly different scores from those in the control group, then outcomes-based education has a positive effect. Let blended learning be the independent variable (IV), outcomes-based education be the mediating variable (MV), and score difference be the dependent variable (DV). There is mediating effect when the following requirements are satisfied: significant correlation of IV to DV, significant correlation of IV to MV, significant relationship of MV to DV when both IV and MV are predictors in a regression model, and the absolute value of the coefficient of IV as sole predictor is larger than that when both IV and MV are predictors. With a positive mediating effect of outcomes-base education on the effect of blended learning on student performance, it will be recommended to integrate outcomes-based education into blended learning. This will yield the best learning results.Keywords: outcome-based teaching, blended learning, face-to-face, student-centered
Procedia PDF Downloads 29312179 Learning Management System Technologies for Teaching Computer Science at a Distance Education Institution
Authors: Leila Goosen, Dalize van Heerden
Abstract:
The performance outcomes of first year Computer Science and Information Technology students across the world are of great concern, whether they are being taught in a face-to-face environment or via distance education. In the face-to-face environment, it is, however, somewhat easier to teach and support students than it is in a distance education environment. The face-to-face academic can more easily gauge the level of understanding and participation of students and implement interventions to address issues, which may arise. With the inroads that Web 2.0 and Web 3.0 technologies are making, the world of online teaching and learning are rapidly expanding, bringing about technologies, which allows for similar interactions between online academics and their students as available to their face-to-face counter parts. At the University of South Africa (UNISA), the Learning Management System (LMS) is called myUNISA and it is deployed on a SAKAI platform. In this paper, we will take a look at some of the myUNISA technologies implemented in the teaching of a first year programming course, how they are implemented and, in some cases, we will indicate how this affects the performance outcomes of students.Keywords: computer science, Distance Education Technologies, Learning Management System, face-to-face environment
Procedia PDF Downloads 50012178 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct
Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi
Abstract:
Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient
Procedia PDF Downloads 35812177 The Culture of Extrajudicial Executions: An Investigative Study of the Philippines’ Fifth Republic
Authors: Nathalie Quinto, Danielle Solancho
Abstract:
In 1986, after Marcos’ Martial Law of 1972, the Philippines revised its constitution for the fifth time, under the Aquino Administration. Extrajudicial violence was expected to be lessened, if not completely eradicated after this was passed. However, state-sponsored executions continued to persist even in the present time. There are currently identified policy gaps when it comes to extrajudicial cases, as there is no generally accepted definition of the term in the Philippines. In this paper, a triangulation method of historically published papers, key informant interviews, and focus group discussions of academics, scholars, and people who are involved in various cases found, was utilized for the methodology. This paper explores the establishment of a normalized system of state-sponsored executions in the country and why the state resorts to this kind of action. It found that due to a weak political, and social institution, a culture of extrajudicial executions was established.Keywords: extrajudicial execution, human rights, justice, security
Procedia PDF Downloads 26712176 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 11212175 Effect of Video-Based Instructional Strategy on Junior Secondary School Students' Academic Achievement in Social Studies in Ondo State, Nigeria
Authors: Abidoye James Alabi
Abstract:
This study investigated the effect of video-based instructional strategy on junior secondary school academic achievement in social studies. The influence of gender on the academic achievement of student taught with video-based instructional strategy was also examined. The study adopted a pre-test and pro-test control group quasi-experimental design. Simple random sampling technique was used to select 40 students from two schools in Akure town in Ondo State. The researcher developed instructional video package on social studies concept which was used as treatment instrument for the experimental group while the control group was exposed to conventional teaching method. The instruments used in this study are social studies achievement test and instructional video package (IVP). T-test statistic was used to analyse the hypotheses. The findings revealed that experimental group performed better than the control group. It was also shown that gender has no significant effect on students’ academic achievement when exposed to an instructional video package. It was recommended that appropriate training and workshop should be organized by the government for the social studies teachers for effective use of instructional video package in order to enhance teachers productivities and learning among students in secondary schools.Keywords: instructional video package, conventional teaching method, social studies, junior secondary school
Procedia PDF Downloads 42712174 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 13512173 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 31012172 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students
Authors: Robin Lok Wang Ma
Abstract:
The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained in their journeys. In recent years, different pedagogies of teaching, including entrepreneurship, experiential and lifelong learning, as well as dream builder, etc., have been widely used for education purposes. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gaining knowledge via traditional lectures, laboratory demonstrations, tutorials, and so on. The capability to identify both complex problems and their corresponding solutions in daily life are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch them to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from the instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledge and skills they need, including essential communication, logical thinking, and, more importantly, problem solving for their lifelong learning journey.Keywords: problem solving, lifelong learning, entrepreneurship, engineering
Procedia PDF Downloads 9612171 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 6812170 Integration of Technology for Enhanced Learning among Generation Y and Z Nursing Students
Authors: Tarandeep Kaur
Abstract:
Generation Y and Z nursing students have a much higher need for technology-based stimulation than previous generations, as they may find traditional methods of education boring and disinterested. These generations prefer experiential learning and the use of advanced technology for enhanced learning. Therefore, nursing educators must acquire knowledge to make better use of technology and technological tools for instruction. Millennials and generation are digital natives, optimistic, assertive, want engagement, instant feedback, and collaborative approach. The integration of technology and the efficacy of its use can be challenging for nursing educators. The SAMR (substitution, augmentation, modification, and redefinition) model designed and developed by Dr. Ruben Puentedura can help nursing educators to engage their students in different levels of technology integration for effective learning. Nursing educators should understand that technology use in the classroom must be purposeful. The influx of technology in nursing education is ever-changing; therefore, nursing educators have to constantly enhance and develop technical skills to keep up with the emerging technology in the schools as well as hospitals. In the Saskatchewan Collaborative Bachelor of Nursing (SCBSCN) program at Saskatchewan polytechnic, we use technology at various levels using the SAMR model in our program, including low and high-fidelity simulation labs. We are also exploring futuristic options of using virtual reality and gaming in our classrooms as an innovative way to motivate, increase critical thinking, create active learning, provide immediate feedback, improve student retention and create collaboration.Keywords: generations, nursing, SAMR, technology
Procedia PDF Downloads 11312169 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam A. Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model
Procedia PDF Downloads 42312168 Creating an Enabling Learning Environment for Learners with Visual Impairments Inlesotho Rural Schools by Using Asset-Based Approaches
Authors: Mamochana, A. Ramatea, Fumane, P. Khanare
Abstract:
Enabling the learning environment is a significant and adaptive technique necessary to navigate learners’ educational challenges. However, research has indicated that quality provision of education in the environments that are enabling, especially to learners with visual impairments (LVIs, hereafter) in rural schools, remain an ongoing challenge globally. Hence, LVIs often have a lower level of academic performance as compared to their peers. To balance this gap and fulfill learners'fundamentalhuman rights¬ of receiving an equal quality education, appropriate measures and structures that make enabling learning environment a better place to learn must be better understood. This paper, therefore, intends to find possible means that rural schools of Lesotho can employ to make the learning environment for LVIs enabling. The present study aims to determine suitable assets that can be drawn to make the learning environment for LVIs enabling. The study is also informed by the transformative paradigm and situated within a qualitative research approach. Data were generated through focus group discussions with twelve teachers who were purposefully selected from two rural primary schools in Lesotho. The generated data were then analyzed thematically using Braun and Clarke's six-phase framework. The findings of the study indicated that participating teachers do have an understanding that rural schools boast of assets (existing and hidden) that have a positive influence in responding to the special educational needs of LVIs. However, the participants also admitted that although their schools boast of assets, they still experience limited knowledge about the use of the existing assets and thus, realized a need for improved collaboration, involvement of the existing assets, and enhancement of academic resources to make LVIs’ learning environment enabling. The findings of this study highlight the significance of the effective use of assets. Additionally, coincides with literature that shows recognizing and tapping into the existing assets enable learning for LVIs. In conclusion, the participants in the current study indicated that for LVIs’ learning environment to be enabling, there has to be sufficient use of the existing assets. The researchers, therefore, recommend that the appropriate use of assets is good, but may not be sufficient if the existing assets are not adequately managed. Hence,VILs experience a vicious cycle of vulnerability. It was thus, recommended that adequate use of assets and teachers' engagement as active assets should always be considered to make the learning environment a better place for LVIs to learan in the futureKeywords: assets, enabling learning environment, rural schools, learners with visual impairments
Procedia PDF Downloads 11012167 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English
Authors: Adnan Z. Mkhelif
Abstract:
Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.Keywords: corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency
Procedia PDF Downloads 25612166 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 2512165 PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication
Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, Shivesh Tripathi, V. S. Tripathi
Abstract:
In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication.Keywords: antenna, array, reconfigurable, vehicular
Procedia PDF Downloads 26212164 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 2112163 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 18712162 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 9312161 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques
Procedia PDF Downloads 8212160 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida
Authors: K. Thakkar, C. Ghenai
Abstract:
An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions
Procedia PDF Downloads 44712159 Mobile Learning and Student Engagement in English Language Teaching: The Case of First-Year Undergraduate Students at Ecole Normal Superieur, Algeria
Authors: I. Tiahi
Abstract:
The aim of the current paper is to explore educational practices in contemporary Algeria. Researches explain such practices bear traditional approach and the overlooks modern teaching methods such as mobile learning. That is why the research output of examining student engagement in respect of mobile learning was obtained from the following objectives: (1) To evaluate the current practice of English language teaching within Algerian higher education institutions, (2) To explore how social constructivism theory and m-learning help students’ engagement in the classroom and (3) To explore the feasibility and acceptability of m-learning amongst institutional leaders. The methodology underpins a case study and action research. For the case study, the researcher engaged with 6 teachers, 4 institutional leaders, and 30 students subjected for semi-structured interviews and classroom observations to explore the current teaching methods for English as a foreign language. For the action research, the researcher applied an intervention course to investigate the possibility and implications for future implementation of mobile learning in higher education institutions. The results were deployed using thematic analysis. The research outcome showed that the disengagement of students in English language learning has many aspects. As seen from the interviews from the teachers, the researcher found that they do not have enough resources except for using ppt for some teacher. According to them, the teaching method they are using is mostly communicative and competency-based approach. Teachers informed that students are disengaged because they have psychological barriers. In classroom setting, the students are conscious about social approval from the peer, and thus if they are to face negative reinforcement which would damage their image, it is seen as a preventive mechanism to be scared of committing mistakes. This was also very reflective in this finding. A lot of other arguments can be given for this claim; however, in Algerian setting, it is usual practice where teachers do not provide positive reinforcement which is open up students for possible learning. Thus, in order to overcome such a psychological barrier, proper measures can be taken. On a conclusive remark, it is evident that teachers, students, and institutional leaders provided positive feedback for using mobile learning. It is not only motivating but also engaging in learning processes. Apps such as Kahoot, Padlet and Slido were well received and thus can be taken further to examine its higher impact in Algerian context. Thus, in the future, it will be important to implement m-learning effectively in higher education to transform the current traditional practices into modern, innovative and active learning. Persuasion for this change for stakeholder may be challenging; however, its long-term benefits can be reflective from the current research paper.Keywords: Algerian context, mobile learning, social constructivism, student engagement
Procedia PDF Downloads 143