Search results for: real%20rational%20matrix%20transfer%20functions
3408 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm
Authors: Kamel Belammi, Houria Fatrim
Abstract:
imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes
Procedia PDF Downloads 5313407 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 173406 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 3863405 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines
Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman
Abstract:
Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy
Procedia PDF Downloads 2373404 Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR
Authors: Omar S. Sharaf
Abstract:
The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene.Keywords: halal food, baby infant formula, chocolate based products, PCR, Jordan
Procedia PDF Downloads 5323403 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 5343402 The Veil of Virtuality: Anonymity and Trust in the Metaverse's New Frontier
Abstract:
Utilizing a preregistered randomized experiment, this study explores the effects of anonymity and curated identity on trust within the Metaverse. Participants were randomly assigned to different conditions of anonymity and identity curation and engaged in a series of tasks designed to mirror the complexities of trust in real-world social interactions. Trust was measured using the classical trust game, allowing for a nuanced understanding of how these factors interact and influence trust. The findings reveal that higher levels of anonymity negatively impact trust, while identity curation can moderate this effect. Mechanism analysis uncovers how anonymity influences perceived reciprocity and group cohesion, and how curation can moderate these relationships. The results demonstrate a nuanced interaction between anonymity and trust, with variations across different curation levels. These insights provide a multifaceted understanding of trust within virtual environments, contributing valuable knowledge to the design, policy-making, and ethical considerations of the MetaverseKeywords: metaverse, anonymity, curated identity, social behavior, trust
Procedia PDF Downloads 1373401 Impact of Corporate Social Responsibility on the Organisational Performance
Authors: Jagbir Singh Kadyan, C. A. Suman Kadyan
Abstract:
The researchers attempts to establish whether a relationship exists between the social activities undertaken & the funds that has been spent by the selected corporate organisations. Corporate listed on the (NSE) National Stock Exchange of India, under different categories shall be selected as a sample for the purpose of this study. The researches shall also study the dynamics of corporate social responsibility funding, financing & management of corporate social responsibility funds by the above selected organisations in the Indian context. The rationale behind selecting & undertaking specific corporate social responsibility activities shall be analysed & interpreted to discover the real drivers of corporate social responsibility. Besides above, an attempt shall further make an effort to understand & analyse the nature of impact on the selected corporate organisations on its overall performances due to the activities undertaken under their specific corporate social responsibility programs.Keywords: corporate social responsibility, organisational performance, national stock exchange, sustainability, society, health, education, sanitation, environment
Procedia PDF Downloads 5943400 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions
Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani
Abstract:
The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.Keywords: estimation, bandwidth, mean square error, cumulative distribution function
Procedia PDF Downloads 5793399 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.Keywords: DSDV, OLSR, quality of service, routing protocols, VANET
Procedia PDF Downloads 4683398 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market
Authors: Zuk Nechemia Turbovich
Abstract:
This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement
Procedia PDF Downloads 1803397 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling
Authors: Muhammad Nouman Qureshi, Muhammad Hanif
Abstract:
Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation
Procedia PDF Downloads 2353396 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations
Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang
Abstract:
Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.Keywords: access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security
Procedia PDF Downloads 3573395 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance
Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq
Abstract:
In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF
Procedia PDF Downloads 4183394 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material
Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel
Abstract:
In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient
Procedia PDF Downloads 4303393 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5273392 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education
Authors: Sandra Arango-Caro, Kristine Callis-Duehl
Abstract:
The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.Keywords: assessment, augmented reality, education, plant science, virtual reality
Procedia PDF Downloads 1723391 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad
Authors: Ashwini Umale
Abstract:
Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software
Procedia PDF Downloads 5033390 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1513389 Unveiling Bengali Women’s Appreciation of Modernizing Japan
Authors: Lopamudra Malek
Abstract:
It is known to all that Japan was closed till 1853 abruptly; Commodore Culbreath Matthew Perry has played a pivotal role in Japan’s exposure to modernization and facing the real world as an Asian entity. As Japan opened its door for the world, Indians, especially four women from Bengal, visited Japan. They were Hariprova Takeda, Sarojnalini Dutta, Santa Devi and Parul Devi. All of them were from different entities, but there were some bewildering similarities also in their depiction. How they penetrated their exposure to modernizing Japan is the motto of the research. It should be mentioned that two of them were directly influenced by Rabindranath Tagore. The methodology that has been followed while doing this research is depending on secondary source materials, like books, articles, etc. Japan was changing herself relentlessly towards modernization and westernization and these four women had witnessed the changing Japan and how the changing Japan has reflected in their write-ups and autobiography is the fundamental part of the research. As all of them were women, they had compared themselves with Japanese women. The finding of the research is, astonishingly, all of them found and comprehended Japan as a country where women were having more financial sovereignty and freedom of thought comparing to India in those days.Keywords: empowerment, Japan, modernization, women
Procedia PDF Downloads 2133388 Testing the Change in Correlation Structure across Markets: High-Dimensional Data
Authors: Malay Bhattacharyya, Saparya Suresh
Abstract:
The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition
Procedia PDF Downloads 1233387 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1363386 Damage Assessment and Repair for Older Brick Buildings
Authors: Tim D. Sass
Abstract:
The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements.Keywords: brick, damage, deterioration, facade
Procedia PDF Downloads 2253385 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications
Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa
Abstract:
It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices
Procedia PDF Downloads 593384 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network
Authors: Abdullah Al Mamun, Tarek R. Sheltami
Abstract:
Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN
Procedia PDF Downloads 3303383 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems
Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang
Abstract:
There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core
Procedia PDF Downloads 1443382 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 1733381 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 833380 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 3393379 Enhancing Metaverse Security: A Multi-Factor Authentication Scheme
Authors: R. Chinnaiyaprabhu, S. Bharanidharan, V. Dharsana, Rajalavanya
Abstract:
The concept of the Metaverse represents a potential evolution in the realm of cyberspace. In the early stages of Web 2.0, we observed a proliferation of online pseudonyms or 'nyms,' which increased the prevalence of fake accounts and made it challenging to establish unique online identities for various roles. However, in the era of Web 3.0, particularly in the context of the Metaverse, an individual's digital identity is intrinsically linked to their real-world identity. Consequently, actions taken in the Metaverse can carry significant consequences in the physical world. In light of these considerations, we propose the development of an innovative authentication system known as 'Metasec.' This system is designed to enhance security for digital assets, online identities, avatars, and user accounts within the Metaverse. Notably, Metasec operates as a password less authentication solution, relying on a multifaceted approach to security, encompassing device attestation, facial recognition, and pattern-based security keys.Keywords: metaverse, multifactor authentication, security, facial recognition, patten password
Procedia PDF Downloads 65