Search results for: physics-informed neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5280

Search results for: physics-informed neural network

3450 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms

Authors: Ahmad E. Aldousaria, Abdulla Al Kafy

Abstract:

Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.

Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing

Procedia PDF Downloads 227
3449 Supply Chain Network Design for Perishable Products in Developing Countries

Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda

Abstract:

Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.

Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment

Procedia PDF Downloads 320
3448 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: beam structures, layerwise, optimization, variable stiffness

Procedia PDF Downloads 142
3447 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security

Authors: Chia-Chi Chang

Abstract:

Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.

Keywords: wireless sensor network, battery-driven, sleep mode, home security

Procedia PDF Downloads 307
3446 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil

Procedia PDF Downloads 359
3445 Handshake Algorithm for Minimum Spanning Tree Construction

Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha

Abstract:

In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.

Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis

Procedia PDF Downloads 658
3444 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina

Abstract:

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction

Procedia PDF Downloads 161
3443 Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment

Authors: Manas Tripathi, Arunabha Mukhopadhyay

Abstract:

In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.

Keywords: cloud computing, DDoS, Dijkstra, Yen’s k-shortest path, network security

Procedia PDF Downloads 278
3442 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
3441 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 75
3440 VANETs: Security Challenges and Future Directions

Authors: Jared Oluoch

Abstract:

Connected vehicles are equipped with wireless sensors that aid in Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication. These vehicles will in the near future provide road safety, improve transport efficiency, and reduce traffic congestion. One of the challenges for connected vehicles is how to ensure that information sent across the network is secure. If security of the network is not guaranteed, several attacks can occur, thereby compromising the robustness, reliability, and efficiency of the network. This paper discusses existing security mechanisms and unique properties of connected vehicles. The methodology employed in this work is exploratory. The paper reviews existing security solutions for connected vehicles. More concretely, it discusses various cryptographic mechanisms available, and suggests areas of improvement. The study proposes a combination of symmetric key encryption and public key cryptography to improve security. The study further proposes message aggregation as a technique to overcome message redundancy. This paper offers a comprehensive overview of connected vehicles technology, its applications, its security mechanisms, open challenges, and potential areas of future research.

Keywords: VANET, connected vehicles, 802.11p, WAVE, DSRC, trust, security, cryptography

Procedia PDF Downloads 312
3439 A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success.

Keywords: coordinate-based optimal routing, Hamiltonian Circuit, heuristic algorithm, traveling salesman problem, vehicle routing problem

Procedia PDF Downloads 147
3438 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective

Authors: Meron Okbandrias

Abstract:

The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.

Keywords: migrant, spaza shops, relationship-based system, South Africa

Procedia PDF Downloads 127
3437 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
3436 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks

Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet

Abstract:

In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.

Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network

Procedia PDF Downloads 238
3435 Effects of Compensation on Distribution System Technical Losses

Authors: B. Kekezoglu, C. Kocatepe, O. Arikan, Y. Hacialiefendioglu, G. Ucar

Abstract:

One of the significant problems of energy systems is to supply economic and efficient energy to consumers. Therefore studies has been continued to reduce technical losses in the network. In this paper, the technical losses analyzed for a portion of European side of Istanbul MV distribution network for different compensation scenarios by considering real system and load data and results are presented. Investigated system is modeled with CYME Power Engineering Software and optimal capacity placement has been proposed to minimize losses.

Keywords: distribution system, optimal capacitor placement, reactive power compensation, technical losses

Procedia PDF Downloads 674
3434 Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study

Authors: Kaiying Lai, Suiping Wang, Luodi Yu, Yang Zhang, Pengmin Qin

Abstract:

Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD.

Keywords: ASD, sensory profile, pitch processing, mismatch negativity, MMN

Procedia PDF Downloads 391
3433 Imputation of Urban Movement Patterns Using Big Data

Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson

Abstract:

Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.

Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population

Procedia PDF Downloads 231
3432 Civic Participation in Context of Political Transformation: Case of Argentina

Authors: Kirill Neverov

Abstract:

In the paper is considered issues of civic participation in context of changing political landscape of Argentina. Last two years, this South American country faced a drastic change of political course. Pro-peronist, left-oriented administration of Christina Fernandez de Kirchner were replaced by right of center Mauricio Macri's one. The study is focused on inclusive policy in conditions of political transformations. We use network analysis to figure out which actors are involved in participation and to describe connections between them. As a resuflt, we plan to receive map of transactions which form inclusive policy in Argentina.

Keywords: civic participation, Argentina, political transformation, network analysis

Procedia PDF Downloads 209
3431 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 511
3430 Smartphones in the (Class) Room in Pandemic and Post-pandemic Times: a Study in an Ecological Perspective

Authors: Junia Braga, Antonio carlos Martins, Marcos Racilan

Abstract:

Drawing on the ecological approach, this paper reports a qualitative study that aims to understand how mobile technologies were integrated during the pandemic in the context of language teaching and the use of these technologies in post-pandemic times. Seventy-six teachers answered a questionnaire about their experiences. The findings show how the network with peers scaffolded this experience and played a crucial role in their appropriation of those technologies. They also suggest that this network may have contributed to the normalisation of digital technology use.

Keywords: ecological perspective, language teaching, mobile technologies, teacher education

Procedia PDF Downloads 108
3429 A Deep Learning Approach to Online Social Network Account Compromisation

Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang

Abstract:

The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.

Keywords: computer security, network security, online social network, account compromisation

Procedia PDF Downloads 119
3428 Exploring the Link between Intangible Capital and Urban Economic Development: The Case of Three UK Core Cities

Authors: Melissa Dickinson

Abstract:

In the context of intense global competitiveness and urban transformations, today’s cities are faced with enormous challenges. There is increasing pressure among cities and regions to respond promptly and efficiently to fierce market progressions, to offer a competitive advantage, higher flexibility, and to be pro-active in creating future markets. Consequently, competition among cities and regions within the dynamics of a worldwide spatial economic system is growing fiercer, amplifying the importance of intangible capital in shaping the competitive and dynamic economic performance of organisations and firms. Accordingly, this study addresses how intangible capital influences urban economic development within an urban environment. Despite substantial research on the economic, and strategic determinants of urban economic development this multidimensional phenomenon remains to be one of the greatest challenges for economic geographers. The research provides a unique contribution, exploring intangible capital through the lenses of entrepreneurial capital and social-network capital. Drawing on business surveys and in-depth interviews with key stakeholders in the case of the three UK Core Cities Birmingham, Bristol and Cardiff. This paper critically considers how entrepreneurial capital and social-network capital is a crucial source of competitiveness and urban economic development. This paper deals with questions concerning the complexity of operationalizing ‘network capital’ in different urban settings and the challenges that reside in characterising its effects. The paper will highlight the role of institutions in facilitating urban economic development. Particular emphasis will be placed on exploring the roles formal and informal institutions have in delivering, supporting and nurturing entrepreneurial capital and social-network capital, to facilitate urban economic development. Discussions will then consider how institutions moderate and contribute to the economic development of urban areas, to provide implications in terms of future policy formulation in the context of large and medium sized cities.

Keywords: urban economic development, network capital, entrepreneurialism, institutions

Procedia PDF Downloads 276
3427 Control of Photovoltaic System Interfacing Grid

Authors: Zerzouri Nora

Abstract:

In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.

Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid

Procedia PDF Downloads 119
3426 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 240
3425 DOS and DDOS Attacks

Authors: Amin Hamrahi, Niloofar Moghaddam

Abstract:

Denial of Service is for denial-of-service attack, a type of attack on a network that is designed to bring the network to its knees by flooding it with useless traffic. Denial of Service (DoS) attacks have become a major threat to current computer networks. Many recent DoS attacks were launched via a large number of distributed attacking hosts in the Internet. These attacks are called distributed denial of service (DDoS) attacks. To have a better understanding on DoS attacks, this article provides an overview on existing DoS and DDoS attacks and major defense technologies in the Internet.

Keywords: denial of service, distributed denial of service, traffic, flooding

Procedia PDF Downloads 392
3424 Psychological Stress As A Catalyst For Multiple Sclerosis Progression: Clarifying Pathways From Neural Activation to Immune Dysregulation

Authors: Noah Emil Glisik

Abstract:

Multiple sclerosis (MS) is a chronic, immune-mediated disorder characterized by neurodegenerative processes and a highly variable disease course. Recent research highlights a complex interplay between psychological stress and MS progression, with both acute and chronic stressors linked to heightened inflammatory activity, increased relapse risk, and accelerated disability. This review synthesizes findings from systematic analyses, cohort studies, and neuroimaging investigations to examine how stress contributes to disease dynamics in MS. Evidence suggests that psychological stress influences MS progression through neural and physiological pathways, including dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and heightened activity in specific brain regions, such as the insular cortex. Notably, functional MRI studies indicate that stress-induced neural activity may predict future atrophy in gray matter regions implicated in motor and cognitive function, thus supporting a neurobiological link between stress and neurodegeneration in MS. Longitudinal studies further associate chronic stress with reduced quality of life and higher relapse frequency, emphasizing the need for a multifaceted therapeutic approach that addresses both the physical and psychological dimensions of MS. Evidence from intervention studies suggests that stress management strategies, such as cognitive-behavioral therapy and mindfulness-based programs, may reduce relapse rates and mitigate lesion formation in MS patients. These findings underscore the importance of integrating stress-reducing interventions into standard MS care, with potential to improve disease outcomes and patient well-being. Further research is essential to clarify the causal pathways and develop targeted interventions that could modify the stress response in MS, offering an avenue to address disease progression and enhance quality of life.

Keywords: multiple sclerosis, psychological stress, disease progression, neuroimaging, stress management

Procedia PDF Downloads 10
3423 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand

Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat

Abstract:

Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.

Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting

Procedia PDF Downloads 189
3422 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: distributed generation, distribution network, radial network, wind turbine generating system

Procedia PDF Downloads 406
3421 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 240